Advertisement

Breeding Dry Beans (Phaseolus vulqaris L.) with Improved Cooking and Canning Quality Traits

  • Asif M. Iqbal Qureshi
  • Rie Sadohara
Chapter

Abstract

The end-use quality of dry beans includes nutritional properties, cooking time, and sensory characteristics. Improvement of the nutritional properties such as protein digestibility and iron bioavailability will render beans a better carrier of essential nutrients. Short cooking time will benefit consumers by requiring lower fuel input, improving their quality of life. Better sensory characteristics will increase the value of beans as a food crop. Not only those quality traits, but also agronomic traits and seed appearance would need to meet the local needs. It is time-consuming and labor-intensive to evaluate quality traits; thus, fast phenotyping methods have been explored such as NIR, simplified experimental procedures, and computational prediction. Genetic analyses to identify QTL for quality traits have been conducted, which will eventually facilitate marker-assisted selection in breeding programs. Canning is an important process to ameliorate the tastiness of beans and commercial canning processes are used to destroy or reduce these anti-nutritional factors and soften the bean texture, which results in a safe and nutritious food. Selection of high canning quality common bean has a preeminent importance and ultimately determines the acceptability of new dry bean varieties by the canning industry. The traits of canning quality are important to bean consumers and processors, and improving them will contribute to the profitability of canned bean market.

Keywords

Common beans Cooking quality Canning quality 

References

  1. Arvanitoyannis IS, Mavromatis A, Rodiatis A, Goulas C (2007) Physicochemical and sensory analysis of dry bean landraces in conjunction with multivariate analysis: An exploratory approach. Int J Food Sci Technol 42:819–826.  https://doi.org/10.1111/j.1365-2621.2007.01289.x CrossRefGoogle Scholar
  2. Asare-Marfo D, Herrington C, Alwang J et al (2016) Assessing the adoption of high iron bean varieties and their impact on iron intakes and other livelihood outcomes in Rwanda. IFPRI, Washington, DCGoogle Scholar
  3. Balasubramanian P, Slinkard A, Tyler R, Vandenberg A (1999) Genotype and environment effect on canning quality of dry bean grown in Saskatchewan. Can J Plant Sci 79:335–342CrossRefGoogle Scholar
  4. Balasubramanian P, Slinkard A, Tyler R, Vandenberg A (2000) A modified laboratory canning protocol for quality evaluation of dry bean (Phaseolus vulgaris L.). J Sci Food Agric 80:732–738CrossRefGoogle Scholar
  5. Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391.  https://doi.org/10.1177/156482650002100408 CrossRefGoogle Scholar
  6. Bender AE, Reaidi GB (1982) Toxicity of Kidney Beans (Phaseolus vulgaris) with particular reference to lectins. J Plant Foods 4:15–22.  https://doi.org/10.1080/0142968X.1982.11904243 CrossRefGoogle Scholar
  7. Blair MW, Astudillo C, Grusak MA et al (2009) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breed 23:197–207.  https://doi.org/10.1007/s11032-008-9225-z CrossRefGoogle Scholar
  8. Borchgrevink CP (2012) Culinary perspective of dry beans and pulses. In: Dry beans and pulses production, processing and nutrition. Blackwell Publishing Ltd., Oxford, pp 311–334CrossRefGoogle Scholar
  9. Boukar O (2013) Nondestructive determination of beans water absorption capacity using CFA images analysis for Hard-To-Cook evaluation. Int J Electr Comput Eng 3.  https://doi.org/10.11591/ijece.v3i2.2149
  10. Broughton WJ, Hernández G, Blair M et al (2003) Beans (Phaseolus spp.) – model food legumes. Plant Soil 252:55–128.  https://doi.org/10.1023/A:1024146710611 CrossRefGoogle Scholar
  11. Campion B, Perrone D, Galasso I, Bollini R (2009a) Common bean (Phaseolus vulgaris L.) lines devoid of major lectin proteins. Plant Breed 128:199–204.  https://doi.org/10.1111/j.1439-0523.2008.01569.x CrossRefGoogle Scholar
  12. Campion B, Sparvoli F, Doria E et al (2009b) Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:1211–1221.  https://doi.org/10.1007/s00122-009-0975-8 CrossRefPubMedGoogle Scholar
  13. Campion B, Glahn RP, Tava A et al (2013) Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomic traits. F Crop Res 141:27–37.  https://doi.org/10.1016/j.fcr.2012.10.015 CrossRefGoogle Scholar
  14. Cardona C, Kornegay J, Posso CE et al (1990) Comparative value of four arcelin variants in the development of dry bean lines resistant to the Mexican bean weevil. Entomol Exp Appl 56:197–206.  https://doi.org/10.1111/j.1570-7458.1990.tb01397.x CrossRefGoogle Scholar
  15. Carvalho BL, Ramalho MAP, Vieira Júnior IC, Abreu  de FB (2017) New strategy for evaluating grain cooking quality of progenies in dry bean breeding programs. Crop Breed Appl Biotechnol 17:115–123.  https://doi.org/10.1590/1984-70332017v17n2a18 CrossRefGoogle Scholar
  16. Casañas F, Bosch L, Pujolà M et al (1999) Characteristics of a common bean landrace (Phaseolus vulgaris L) of great culinary value and selection of a commercial inbred line. J Sci Food Agric 79:693–698. https://doi.org/10.1002/(SICI)1097-0010(199904)79:5<693::AID-JSFA239>3.0.CO;2-S CrossRefGoogle Scholar
  17. Castellanos JZ, Guzmán-Maldonado H, Acosta-Gallegos JA, Kelly JD (1995) Effects of hardshell character on cooking time of common beans grown in the semiarid highlands of Mexico. J Sci Food Agric 69:437–443.  https://doi.org/10.1002/jsfa.2740690406 CrossRefGoogle Scholar
  18. Castellanos JZ, Guzman-Maldonado SH, Jimenez A, Acosta-Gallegos JA (1996) Preferential habits of common bean (Phaseolus vulgaris L.) consumers in Mexico. In: Reports of bean improvement cooperative and National Dry Bean Council research conference. National Dry Bean Council, Vienna, VA, pp 182–183Google Scholar
  19. Cichy KA, Forster S, Grafton KF, Hosfield GL (2005) Inheritance of seed zinc accumulation in navy bean. Crop Sci 45:864.  https://doi.org/10.2135/cropsci2004.0104 CrossRefGoogle Scholar
  20. Cichy KA, Fernandez A, Kilian A, Kelly JD, Galeano CH, Shaw S, Brick B, Hodkinson D, Troxtell E (2014) QTL analysis of canning quality and color retention in black beans (Phaseolus vulgaris L.). Mol Breed.  https://doi.org/10.1007/s11032-013-9940-y CrossRefGoogle Scholar
  21. Cichy KA, Wiesinger JA, Mendoza FA (2015) Genetic diversity and genome-wide association analysis of cooking time in dry bean (Phaseolus vulgaris L.). Theor Appl Genet 128:1555–1567.  https://doi.org/10.1007/s00122-015-2531-z CrossRefPubMedGoogle Scholar
  22. Coelho CMM, de Mattos Bellato C, Santos JCP et al (2007) Effect of phytate and storage conditions on the development of the ‘hard-to-cook’ phenomenon in common beans. J Sci Food Agric 87:1237–1243.  https://doi.org/10.1002/jsfa.2822 CrossRefGoogle Scholar
  23. Deshpande SS, Sathe SK, Salunkhe DK (1984) Interrelationships between certain physical and chemical properties of dry bean (Phaseolus vulgaris L.). Plant Foods Hum Nutr 34:53–65.  https://doi.org/10.1007/BF01095072 CrossRefGoogle Scholar
  24. Díaz AM, Caldas GV, Blair MW (2010) Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Res Int 43:595–601.  https://doi.org/10.1016/j.foodres.2009.07.014 CrossRefGoogle Scholar
  25. Donangelo CM, Woodhouse LR, King SM et al (2003) Iron and zinc absorption from two bean (Phaseolus vulgaris L.) genotypes in young women. J Agric Food Chem 51:5137–5143.  https://doi.org/10.1021/jf030151w CrossRefPubMedGoogle Scholar
  26. Doria E, Campion B, Sparvoli F et al (2012) Anti-nutrient components and metabolites with health implications in seeds of 10 common bean (Phaseolus vulgaris L. and Phaseolus lunatus L.) landraces cultivated in southern Italy. J Food Compos Anal 26:72–80.  https://doi.org/10.1016/j.jfca.2012.03.005 CrossRefGoogle Scholar
  27. Elia FM, Hosfield GL, Kelly JD, Uebersax M (1997) Genetic analysis and interrelationships between traits for cooking time, water absortion, and protein and tannin content of andean dry beans. J Am Soc Hort Sci 122:512–518CrossRefGoogle Scholar
  28. Food and Agriculture Organization of the United Nations (2016) FAOSTAT. Crop Stat. http://www.fao.org/faostat/en/#data/QC. Accessed 24 Aug 2018
  29. Foyer CH, Lam H-M, Nguyen HT et al (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2:16112.  https://doi.org/10.1038/nplants.2016.112 CrossRefPubMedGoogle Scholar
  30. Garcia RAV, Rangel PN, Bassinello PZ et al (2012) QTL mapping for the cooking time of common beans. Euphytica 186:779–792.  https://doi.org/10.1007/s10681-011-0587-7 CrossRefGoogle Scholar
  31. Gepts P, Bliss FA (1984) Enhanced available methionine concentration associated with higher phaseolin levels in common bean seeds. Theor Appl Genet 69.  https://doi.org/10.1007/BF00262537 CrossRefGoogle Scholar
  32. Ghaderi A, Hosfield GL, Adams MW, Uebersax MA (1984) Variability in culinary quality, component interrelationships, and breeding implications in navy and pinto beans. J Am Soc Hortic Sci 109:85–90Google Scholar
  33. Glahn RP, Lee OA, Yeung A et al (1998) Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. J Nutr 128:1555–1561CrossRefGoogle Scholar
  34. Glahn RP, Cheng Z, Welch RM, Gregorio GB (2002) Comparison of iron bioavailability from 15 rice genotypes: studies using an in vitro digestion/Caco-2 cell culture model. J Agric Food Chem 50:3586–3591.  https://doi.org/10.1021/jf0116496 CrossRefPubMedGoogle Scholar
  35. Graham GG, Morales E, Placko RP, MacLean WCJ (1979) Nutritive value of brown and black beans for infants and small children. Am J Clin Nutr 32:2362–2366CrossRefGoogle Scholar
  36. Haas JD, Luna SV, Lung’aho MG et al (2016) Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial. J Nutr 146:1586–1592.  https://doi.org/10.3945/jn.115.224741 CrossRefPubMedGoogle Scholar
  37. Hacisalihoglu G, Settles AM (2013) Natural variation in seed composition of 91 common bean genotypes and their possible association with seed coat color. J Plant Nutr 36:772–780.  https://doi.org/10.1080/01904167.2012.754041 CrossRefGoogle Scholar
  38. Hacisalihoglu G, Larbi B, Settles AM (2010) Near-infrared reflectance spectroscopy predicts protein, starch, and seed weight in intact seeds of common bean (Phaseolus vulgaris L.). J Agric Food Chem 58:702–706.  https://doi.org/10.1021/jf9019294 CrossRefPubMedGoogle Scholar
  39. Hartweck LM, Osborn TC (1997) Altering protein composition by genetically removing phaseolin from common bean seeds containing arcelin or phytohemagglutinin. TAG Theor Appl Genet 95:1012–1017.  https://doi.org/10.1007/s001220050655 CrossRefGoogle Scholar
  40. Havemeier S, Erickson J, Slavin J (2017) Dietary guidance for pulses: the challenge and opportunity to be part of both the vegetable and protein food groups. Ann N Y Acad Sci 1(9).  https://doi.org/10.1111/nyas.13308 CrossRefGoogle Scholar
  41. Hayat I, Ahmad A, Masud T et al (2014) Nutritional and health perspectives of beans (Phaseolus vulgaris L.): an overview. Crit Rev Food Sci Nutr 54:580–592.  https://doi.org/10.1080/10408398.2011.596639 CrossRefPubMedGoogle Scholar
  42. Hincks MJ, Stanley DW (1987) Lignification: evidence for a role in hard-to-cook beans. J Food Biochem 11:41–58CrossRefGoogle Scholar
  43. Hosfield G, Ghaderi A, Uebersax M (1984) A factor analysis of yield and sensory and physico-chemical data from tests used to measure culinary quality in dry edible beans. Can J Plant Sci 64:285–293. https://doi.org/10.4141/cjps84-042 CrossRefGoogle Scholar
  44. Hosfield GL (1991) Genetic control of production and food quality factors in dry bean. Food Technol 45(9):98Google Scholar
  45. Hosfield GL, Uebersax MA (1980) Variability in physicochemical properties and nutritional components of tropical and domestic dry bean germplasm. J Am Soc Hortic Sci 105(2):246–252Google Scholar
  46. IEA (2014) WEO-2014 special report: Africa energy outlook. IEA, ParisGoogle Scholar
  47. Iyer V, Salunkhe DK, Sathe SK, Rockland LB (1980) Quick-cooking beans (Phaseolus vulgaris L.): I. Investigations on quality. Qual Plant Plant Foods Hum Nutr 30:27–43.  https://doi.org/10.1007/BF01112102 CrossRefGoogle Scholar
  48. Jacinto-Hernandez C, Azpiroz-Rivero S, Acosta-Gallegos JA et al (2003) Genetic analysis and random amplified polymorphic DNA markers associated with cooking time in common bean. Crop Sci 43:329–332CrossRefGoogle Scholar
  49. Jackson GM, Varriano-Marston E (1981) Hard-to-Cook phenomenon in beans: Effects of accelerated storage on water absorption and cooking time. J Food Sci 46:799–803.  https://doi.org/10.1111/j.1365-2621.1981.tb15351.x CrossRefGoogle Scholar
  50. Jackson ER, Wiese KL (1993) Changes in calculated process times and drained weight based on soaking and blanching of kidney and navy beans. J Food Prot 56:239–242CrossRefGoogle Scholar
  51. Jones PMB, Boulter D (1983) The analysis of development of hardbean during storage of black beans (Phaseolus vulgaris L). Plant Foods Hum Nutr 33:77–85.  https://doi.org/10.1007/BF01093740 CrossRefGoogle Scholar
  52. Kelly JD, Bliss FA (1975) Heritability estimates of percentage seed protein and available methionine and correlations with yield in dry beans. Crop Sci 15:753.  https://doi.org/10.2135/cropsci1975.0011183X001500060004x CrossRefGoogle Scholar
  53. Khanal R, Burt AJ, Woodrow L, Balasubramanian P, Navabi A (2015) Genotypic association of parameters commonly used to predict canning quality of dry bean. Crop Sci 54:2564–2573CrossRefGoogle Scholar
  54. Kinyanjui PK, Njoroge DM, Makokha AO et al (2015) Hydration properties and texture fingerprints of easy- and hard-to-cook bean varieties. Food Sci Nutr 3:39–47.  https://doi.org/10.1002/fsn3.188 CrossRefPubMedGoogle Scholar
  55. Kumar V, Sinha AK, Makkar HPS, Becker K (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120:945–959.  https://doi.org/10.1016/j.foodchem.2009.11.052 CrossRefGoogle Scholar
  56. Lajolo FM, Genovese MI (2002) Nutritional significance of lectins and enzyme inhibitors from legumes. J Agric Food Chem 50:6592–6598.  https://doi.org/10.1021/jf020191k CrossRefPubMedGoogle Scholar
  57. Lange AD, Labuschagne M (2001) Multivariate assessment of canning quality, chemical characteristics and yield of small white canning beans (Phaseolus vulgaris L.) in South Afric. J Sci Food Agric 81:30–35CrossRefGoogle Scholar
  58. Leterme P (2002) Recommendations by health organizations for pulse consumption. Br J Nutr 88:S239–S242.  https://doi.org/10.1079/BJN2002712 CrossRefPubMedGoogle Scholar
  59. Liu K, Bourne MC (1995) Cellular, biological, and physicochemical basis for the hard-to-cook defect in legume seeds. Crit Rev Food Sci Nutr 35:263–298.  https://doi.org/10.1080/10408399509527702 CrossRefPubMedGoogle Scholar
  60. Lu W, Chang KC (1996) Correlations between chemical composition and canning quality attributes of navy bean (Phaseolus vulgaris L.). Cereal Chem 73:785–787Google Scholar
  61. Ma Y, Bliss FA (1978) Seed proteins of common bean. Crop Sci 18:431.  https://doi.org/10.2135/cropsci1978.0011183X001800030018x CrossRefGoogle Scholar
  62. Maes WH, Verbist B (2012) Increasing the sustainability of household cooking in developing countries: policy implications. Renew Sust Energ Rev 16:4204–4221.  https://doi.org/10.1016/j.rser.2012.03.031 CrossRefGoogle Scholar
  63. Makungwa SD, Epulani F, Woodhouse IH (2013) Fuelwood supply: a missed essential component in a food security equation. J Food Secur 1:49–51.  https://doi.org/10.12691/jfs-1-2-6 CrossRefGoogle Scholar
  64. McPherson LL (1990) The effect of the consumption of red kidney beans (Phaseolus vulgaris) on the growth of rats and the implications for human populations. J R Soc Health 110:222–226CrossRefGoogle Scholar
  65. Mendoza FA, Cichy K, Lu R, Kelly J (2014) Evaluation of canning quality traits in black beans (Phaseolus vulgaris L.) by visible/near-infrared spectroscopy. Food Bioprocess Technol 7(9):2666–2678CrossRefGoogle Scholar
  66. Mendoza FA, Kelly JD, Cichy KA (2017) Automated prediction of sensory scores for color and appearance in canned black beans (Phaseolus vulgaris L.) using machine vision. Int J Food Prop 20:83–99.  https://doi.org/10.1080/10942912.2015.1136939 CrossRefGoogle Scholar
  67. Mendoza FA, Cichy KA, Sprague C, Amanda C, Goffnett A, Luc R, Kelly JD (2018) Prediction of canned black bean texture (Phaseolus vulgaris L) fromintact dry seeds using visible/near infrared spectroscopy and hyperspectral imaging data. J Sci Food Agric 98:283–290CrossRefGoogle Scholar
  68. Menéndez A, Curt MD (2013) Energy and socio-economic profile of a small rural community in the highlands of central Tanzania: a case study. Energy Sustain Dev 17:201–209.  https://doi.org/10.1016/j.esd.2012.12.002 CrossRefGoogle Scholar
  69. Merwe D, Osthoff G, Pretorius AJ (2006) Evaluation and standardization of small scale canning methods for small white beans (Phaseolus vulgaris L.) canned in tomato sauce. J Sci Food Agric 86:1115CrossRefGoogle Scholar
  70. Messina V (2014) Nutritional and health benefits of dried beans. Am J Clin Nutr 100:437S–442S.  https://doi.org/10.3945/ajcn.113.071472.2 CrossRefPubMedGoogle Scholar
  71. Mkanda AV, Minnaar A, de Kock HL (2007) Relating consumer preferences to sensory and physicochemical properties of dry beans (Phaseolus vulgaris). J Sci Food Agric 87:2868–2879.  https://doi.org/10.1002/jsfa.3046 CrossRefGoogle Scholar
  72. Monti LM, Grillo S (1983) Legume seed improvement for protein content and quality. Qual Plant Plant Foods Hum Nutr 32:253–266.  https://doi.org/10.1007/BF01091190 CrossRefGoogle Scholar
  73. Montoya CA, Leterme P, Victoria NF et al (2008) Susceptibility of phaseolin to in vitro proteolysis is highly variable across common bean varieties (Phaseolus vulgaris). J Agric Food Chem 56:2183–2191.  https://doi.org/10.1021/jf072576e CrossRefPubMedGoogle Scholar
  74. Navarrete DA, Bressani R (1981) Protein digestibility and protein quality of common beans (Phaseolus vulgaris) fed alone and with maize, in adult humans using a short-term nitrogen balance assay. Am J Clin Nutr 34:1893–1898CrossRefGoogle Scholar
  75. Ngatchou A, Bitjoka L, Boukar O, Tonye E (2012) Color and texture information processing to improve storage beans. Br J Appl Sci Technol 2:96–111.  https://doi.org/10.9734/BJAST/2012/796 CrossRefGoogle Scholar
  76. Nleya T, Vandenberg A, Araganosa G et al (2000) Produce quality of food legumes: genotype (G), environment (E) and (G×E) considerations. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Springer, Dordrecht, pp 173–182CrossRefGoogle Scholar
  77. Oikeh SO, Menkir A, Maziya-Dixon B et al (2003) Assessment of concentrations of iron and zinc and bioavailable iron in grains of early-maturing tropical maize varieties. J Agric Food Chem 51:3688–3694.  https://doi.org/10.1021/jf0261708 CrossRefPubMedGoogle Scholar
  78. Osborn TC, Blake T, Gepts P, Bliss FA (1986) Bean arcelin. Theor Appl Genet 71:847–855.  https://doi.org/10.1007/BF00276428 CrossRefPubMedGoogle Scholar
  79. Osborn TC, Hartweck LM, Harmsen RH et al (2003) Registration of Phaseolus vulgaris genetic stocks with altered seed protein compositions. Crop Sci 43:1570CrossRefGoogle Scholar
  80. Osborni TC, Alexander DC, Sun SSM et al (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240:207–210.  https://doi.org/10.1126/science.240.4849.207 CrossRefPubMedGoogle Scholar
  81. Petry N, Egli I, Zeder C et al (2010) Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr 140:1977–1982.  https://doi.org/10.3945/jn.110.125369 CrossRefPubMedGoogle Scholar
  82. Petry N, Egli I, Gahutu JB et al (2012) Stable iron isotope studies in Rwandese women indicate that the common bean has limited potential as a vehicle for iron biofortification. J Nutr 142:492–497.  https://doi.org/10.3945/jn.111.149286 CrossRefPubMedGoogle Scholar
  83. Petry N, Boy E, Wirth JP, Hurrell RF (2015) Review: the potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7:1144–1173.  https://doi.org/10.3390/nu7021144 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Plans M, Simó J, Casañas F, Sabaté J (2012) Near-infrared spectroscopy analysis of seed coats of common beans (Phaseolus vulgaris L.): a potential tool for breeding and quality evaluation. J Agric Food Chem 60:706–712.  https://doi.org/10.1021/jf204110k CrossRefPubMedGoogle Scholar
  85. Plans M, Simó J, Casañas F et al (2013) Characterization of common beans (Phaseolus vulgaris L.) by infrared spectroscopy: comparison of MIR, FT-NIR and dispersive NIR using portable and benchtop instruments. Food Res Int 54:1643–1651.  https://doi.org/10.1016/j.foodres.2013.09.003 CrossRefGoogle Scholar
  86. Plans M, Simó J, Casañas F et al (2014) Estimating sensory properties of common beans (Phaseolus vulgaris L.) by near infrared spectroscopy. Food Res Int 56:55–62.  https://doi.org/10.1016/j.foodres.2013.12.003 CrossRefGoogle Scholar
  87. Posa-Macalincag MT, Hosfield GL, Grafton KF, Uebersax MA, Kelly JD (2002) Quantitative trait loci (QTL) analysis of canning quality traits in kidney bean (Phaseolus vulgaris L.). J Am Soc Hortic Sci 127:608–615CrossRefGoogle Scholar
  88. Proctor JP, Watts BM (1987) Effect of cultivar, growing location, moisture and phytate content on the cooking times of freshly harvested navy beans. Can J Plant Sci 67:923–926CrossRefGoogle Scholar
  89. Pusztai A, Grant G, Stewart JC et al (1993) Nutritional evaluation of RAZ-2, a new Phaseolus vulgaris bean cultivar containing high levels of the natural insecticidal protein arcelin 1. J Agric Food Chem 41:436–440.  https://doi.org/10.1021/jf00027a017 CrossRefGoogle Scholar
  90. Reddy NR, Pierson MD, Sathe SK, Salunkhe DK (1984) Chemical, nutritional and physiological aspects of dry bean carbohydrates. A review. Food Chem 13:25–68CrossRefGoogle Scholar
  91. Reddy NR, Pierson MD, Sathe SK, Salunkhe DK (1985) Dry bean tannins: a review of nutritional implications. J Am Oil Chem Soc 62:541–549.  https://doi.org/10.1007/BF02542329 CrossRefGoogle Scholar
  92. Reyes-Moreno C, Paredes-López O, Gonzalez E (1993) Hard-to-cook phenomenon in common beans – a review. Crit Rev Food Sci Nutr 33:227–286.  https://doi.org/10.1080/10408399309527621 CrossRefPubMedGoogle Scholar
  93. Romero del Castillo R, Costell E, Plans M et al (2012) A standardized method of preparing common beans (Phaseolus vulgaris L.) for sensory analysis. J Sens Stud 27:188–195.  https://doi.org/10.1111/j.1745-459X.2012.00381.x CrossRefGoogle Scholar
  94. Salunkhe DK (1982) Legumes in human nutriton: current status and future research needs. Curr Sci 51:387–394Google Scholar
  95. Sandberg A-S (2002) Bioavailability of minerals in legumes. Br J Nutr 88:S281–S285.  https://doi.org/10.1079/BJN/2002718 CrossRefGoogle Scholar
  96. Sanz-Calvo M, Atienza-del-Rey J (1999) Sensory analysis of beans (Phaseolus vulgaris). Biotechnol Agron Soc Environ 3:201–204Google Scholar
  97. Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713.  https://doi.org/10.1038/ng.3008 CrossRefPubMedGoogle Scholar
  98. Scott J, Maideni M (1998) Socio-economic survey of three bean growing areas of Malawi. Netw Bean Res Africa Occas Pap Ser 24:1–48Google Scholar
  99. Shellie-Dessert KC, Hosfield GL (1990) Implications of genetic variability for dry bean cooking time and novel cooking methods for fuelwood conservation in Rwanda. Ecol Food Nutr 24:195–211CrossRefGoogle Scholar
  100. Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396CrossRefGoogle Scholar
  101. Srisuma N, Hammerschmidt R, Uebersax MA et al (1989) Storage induced changes of phenolic acids and the development of hard-to-cook in dry beans (Phaseolus vulgaris, var. Seafarer). J Food Sci 54:311–314.  https://doi.org/10.1111/j.1365-2621.1989.tb03069.x CrossRefGoogle Scholar
  102. Stanley DW (1992) A possible role for condensed tannins in bean hardening. Food Res Int 25:187–192.  https://doi.org/10.1016/0963-9969(92)90136-S CrossRefGoogle Scholar
  103. Suárez-Martínez SE, Ferriz-Martínez RA, Campos-Vega R et al (2016) Bean seeds: leading nutraceutical source for human health. CyTA J Food 14:131–137.  https://doi.org/10.1080/19476337.2015.1063548 CrossRefGoogle Scholar
  104. Tako E, Reed S, Anandaraman A et al (2015) Studies of cream seeded carioca beans (Phaseolus vulgaris L.) from a Rwandan efficacy trial: in vitro and in vivo screening tools reflect human studies and predict beneficial results from iron biofortified beans. PLoS One 10:1–15.  https://doi.org/10.1371/journal.pone.0138479 CrossRefGoogle Scholar
  105. Taylor M, Chapman R, Beyaert R et al (2008) Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from γ-glutamyl-S- methyl-cysteine. J Agric Food Chem 56:5647–5654.  https://doi.org/10.1021/jf800787y CrossRefPubMedGoogle Scholar
  106. Umar Lule S, Xia W (2005) Food phenolics, pros and cons: a review. Food Rev Int 21:367–388.  https://doi.org/10.1080/87559120500222862 CrossRefGoogle Scholar
  107. Vasconcelos IM, Oliveira JTA (2004) Antinutritional properties of plant lectins. Toxicon 44:385–403.  https://doi.org/10.1016/j.toxicon.2004.05.005 CrossRefPubMedGoogle Scholar
  108. USDA (1976) U.S. Standards Canned Beans, Dried, Pork, BakedGoogle Scholar
  109. Vaz-Tostes M das G, Verediano TA, de Mejia EG, Brunoro Costa NM (2016) Evaluation of iron and zinc bioavailability of beans targeted for biofortification using in vitro and in vivo models and their effect on the nutritional status of preschool children. J Sci Food Agric 96:1326–1332.  https://doi.org/10.1002/jsfa.7226 CrossRefGoogle Scholar
  110. Walters KJ, Hosfield GL, Uebersax MA, Kelly JD (1997) Navy bean canning quality: correlations, heritability estimates, and randomly amplified polymorphic DNA markers associated with component traits. J Am Soc Hortic Sci 122:338–343CrossRefGoogle Scholar
  111. Wang N, Daun JK (2005) Determination of cooking times of pulses using an automated Mattson cooker apparatus. J Sci Food Agric 85:1631–1635.  https://doi.org/10.1002/jsfa.2134 CrossRefGoogle Scholar
  112. Watts P (2011) Global pulse industry: state of production, consumption and trade; marketing challenges and opportunities. In: Tiwari BK, Gowen A, McKenna BBT-PF (eds) Pulse foods: processing, quality and nutraceutical applications. Academic, San Diego, CA, pp 437–464CrossRefGoogle Scholar
  113. White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593.  https://doi.org/10.1016/j.tplants.2005.10.001 CrossRefPubMedGoogle Scholar
  114. WHO (2015) The global prevalence of anaemia in 2011Google Scholar
  115. Wiesinger JA, Cichy KA, Glahn RP et al (2016) Demonstrating a nutritional advantage to the fast-cooking dry bean (Phaseolus vulgaris L.). J Agric Food Chem 64:8592–8603.  https://doi.org/10.1021/acs.jafc.6b03100 CrossRefPubMedGoogle Scholar
  116. Wortmann CS, Kirkby RA, Eledu CA, Allen DJ (1998) Atlas of common bean (Phaseolus vulgaris L.) production in Africa. CIAT Publ 297:131Google Scholar
  117. Wright EM, Kelly JD (2011) Mapping QTL for seed yield and canning quality following processing of black bean (Phaseolus vulgaris L.). Euphytica 179(3):471–484.  https://doi.org/10.1007/s10681-011-0369-2 CrossRefGoogle Scholar
  118. Xu BJ, Chang SK (2009) Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J Agric Food Chem 57:4754–4764CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Asif M. Iqbal Qureshi
    • 1
    • 2
  • Rie Sadohara
    • 2
  1. 1.Genetics, Plant Breeding & Biotechnology, MRCFC, KhudwaniSher-e-Kashmir University of Agricultural Sciences & Technology of KashmirSrinagar, Jammu and KashmirIndia
  2. 2.Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingUSA

Personalised recommendations