Advertisement

Marker-Assisted Breeding for Enrichment of Provitamin A in Maize

  • Hari Shanker Gupta
  • Firoz Hossain
  • Vignesh Muthusamy
  • Rajkumar Uttamrao Zunjare
Chapter

Abstract

Despite impressive growth in food production that led to increased availability of food grains; malnutrition continues to hangout as the most important health problem especially in the developing and underdeveloped countries. Amongst various components of nutrition, deficiency of micronutrient has turned out to be a major cause of malnutrition resulting in enormous economic loss. Various methods have although been tried to supplement micronutrients in human diet, biofortification of staple food crops has turned out to be robust, cost-effective as well as safe way of delivering micronutrients. Vitamin-A plays vital role in vision and metabolism, and is required to be supplemented through diet as it is not manufactured inside human body. White maize, an important cereal widely used as food and feed, lacks provitamin A (proA)-the precursor for vitamin A. Also, yellow maize contains very low level of proA. The present article attempts to provide an overview of the research efforts made in enriching maize kernels with proA. Characterisation of carotenoid metabolic pathway indicates critical role of phytoene synthase1 (psy1), lycopene epsilon cyclase (lcyE) and β-carotene hydroxylase (crtRB1) in accumulation of proA and hence, introgression of favourable alleles of these genes (through molecular marker-assisted selection), results in accumulation of proA up to 20 μg/g in freshly harvested kernels as compared to 0.2–2 μg/g in traditional yellow kernel maize. Studies on post harvest retention and bioavailability of proA indicate 200 g/day consumption of proA- rich maize can supply approximately 50% of recommended dietary allowance of vitamin A. Consumer acceptance and nutritional impact of carotenoid-rich maize on human and poultry have also been discussed.

Keywords

Zea mays L. β-carotene Biofortification Genetic engineering Marker-assisted selection 

References

  1. Aluru M, Xu Y, Guo R et al (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59:3551–3562.  https://doi.org/10.1093/jxb/ern212 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amod R, Pillay K, Siwela M et al (2016) Acceptance of a complementary food based on provitamin a- biofortified maize and chicken stew. J Hum Ecol 55:152–159CrossRefGoogle Scholar
  3. Awobusuyi TD, Siwela M, Kolanisi U et al (2016) Provitamin A retention and sensory acceptability of amahewu, a non-alcoholic cereal-based beverage made with provitamin A-biofortified maize. J Sci Food Agric 96:1356–1361CrossRefGoogle Scholar
  4. Azmach G, Gedil M, Menkir A et al (2013) Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Biol 13:227.  https://doi.org/10.1186/1471-2229-13-227 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Babu R, Rojas NP, Gao S et al (2013) Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor Appl Genet 126:389–399.  https://doi.org/10.1007/s00122-012-1987-3 CrossRefPubMedGoogle Scholar
  6. Bai L, Kim EH, Dellapenna D et al (2009) Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis. Plant J 59:588–599.  https://doi.org/10.1111/j.1365-313X.2009.03899.x CrossRefPubMedGoogle Scholar
  7. Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58.  https://doi.org/10.1016/j.gfs.2017.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S20–S32.  https://doi.org/10.2135/cropsci2009.09.0531 CrossRefGoogle Scholar
  9. Bouis HE, Christine H, Bonnie M et al (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:202–215Google Scholar
  10. Buckler ES, Gaut BA, McMullen MD (2006) Molecular and functional diversity of maize. Curr Opin Plant Biol 9:172–176CrossRefGoogle Scholar
  11. Buckner B, Miguel PS, Buckner DJ et al (1996) The yl gene of maize codes for phytoene synthase. Genetics 143:479–488PubMedPubMedCentralGoogle Scholar
  12. Burt AJ, Grainger CM, Smid MP et al (2011) Allele mining of exotic maize germplasm to enhance macular carotenoids. Crop Sci 51:991–1004.  https://doi.org/10.2135/cropsci2010.06.0335 CrossRefGoogle Scholar
  13. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572.  https://doi.org/10.1098/rstb.2007.2170 CrossRefGoogle Scholar
  14. Collard BCY, Jahufer MZZ, Brouwer JB et al (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169–196.  https://doi.org/10.1007/s10681-005-1681-5 CrossRefGoogle Scholar
  15. Davis C, Jing H, Howe JA et al (2008) β-Cryptoxanthin from supplements or carotenoid-enhanced maize maintains liver vitamin A in Mongolian gerbils (Meriones unguiculatus) better than or equal to β-carotene supplements. Br J Nutr 100:786–793.  https://doi.org/10.1017/S0007114508944123 CrossRefPubMedGoogle Scholar
  16. De Groote H, Tomlins K, Haleegoah J et al (2010) Assessing rural consumers’ WTP for orange, biofortified maize in Ghana with experimental auctions and a simulated radio message. African Association of Agricultural Economists 48th Agricultural Economics Association of South Africa conference 25Google Scholar
  17. De Moura FF, Miloff A, Boy E (2015) Retention of provitamin a carotenoids in staple crops targeted for biofortification in Africa: cassava, maize and sweet potato. Crit Rev Food Sci Nutr 55:1246–1269.  https://doi.org/10.1080/10408398.2012.724477 CrossRefPubMedPubMedCentralGoogle Scholar
  18. DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738.  https://doi.org/10.1146/annurev.arplant.56.032604.144301 CrossRefPubMedGoogle Scholar
  19. Dhliwayo T, Palacios-Rojas N, Babu R et al (2014) Vitamin A maize. Biofortification progress brief 5. International Food Policy Research Institute (IFPRI), Washington, DCGoogle Scholar
  20. Diaz-Gomez J, Moreno JA, Angulo E et al (2017a) Provitamin A carotenoids from an engineered high carotenoid maize are bioavailable and zeaxanthin does not compromise β-carotene absorption in poultry. Transgenic Res 26:591–601.  https://doi.org/10.1007/s11248-017-0029-y CrossRefPubMedGoogle Scholar
  21. Diaz-Gomez J, Moreno JA, Angulo E et al (2017b) High-carotenoid biofortified maize is an alternative to color additives in poultry feed. Anim Feed Sci Technol.  https://doi.org/10.1016/j.anifeedsci.2017.06.007 CrossRefGoogle Scholar
  22. Dube N, Mashurabad PC, Hossain F et al (2018) β-carotene bio-accessibility from biofortified 1 maize (Zea mays L.) is related to its density and is negatively influenced by lutein and zeaxanthin. Food Funct 9:379–388.  https://doi.org/10.1039/c7fo01034f CrossRefPubMedGoogle Scholar
  23. Egesel CO, Wong JC, Lambert RJ et al (2003) Gene dosage effects on carotenoid concentration in maize grain. Maydica 48:183–190Google Scholar
  24. Fu Z, Chai Y, Zhou Y et al (2013) Natural variation in the sequence of PSY1 and frequency of favorable polymorphisms among tropical and temperate maize germplasm. Theor Appl Genet 126:923–935.  https://doi.org/10.1007/s00122-012-2026-0 CrossRefPubMedGoogle Scholar
  25. Gannon B, Kaliwile C, Arscott SA et al (2014) Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: a community-based, randomized placebo-controlled trial. Am J Clin Nutr 100:1541–1550.  https://doi.org/10.3945/ajcn.114.087379 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gebremeskel S, Garcia-oliveira AL, Menkir A et al (2017) Effectiveness of predictive markers for marker assisted selection of provitamin A carotenoids in medium-late maturing maize (Zea mays L.) inbred lines. J Cereal Sci 79:27–34.  https://doi.org/10.1016/j.jcs.2017.09.001 CrossRefGoogle Scholar
  27. Giuliano G (2014) Plant carotenoids: genomics meets multi-gene engineering. Curr Opin Plant Biol 19:111–117.  https://doi.org/10.1016/j.pbi.2014.05.006 CrossRefPubMedGoogle Scholar
  28. Global Nutrition Report (2017) https://www.globalnutritionreport.org
  29. Gregory JF (1996) Vitamins. In: Fennema OR (ed) Food chemistry, 3rd edn. Marcel Dekker, New York, pp 545–546Google Scholar
  30. Gupta HS, Babu R, Agrawal PK et al (2013) Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breed 132:77–82.  https://doi.org/10.1111/pbr.12009 CrossRefGoogle Scholar
  31. Gupta HS, Hossain F, Muthusamy V (2015a) Biofortification of maize: an Indian perspective. Indian J Genet Plant Breed 75:1–22.  https://doi.org/10.5958/0975-6906.2015.00001 CrossRefGoogle Scholar
  32. Gupta HS, Hossain F, Nepolean T et al (2015b) Understanding genetic and molecular Bases of Fe and Zn accumulation towards development of micronutrient-enriched maize. In: Rakshit A et al (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi.  https://doi.org/10.1007/978-81-322-2169-2_17 CrossRefGoogle Scholar
  33. Harjes CE, Rocheford TR, Bai L et al (2008) Natural genetic variation in Lycopene Epsilon Cyclase tapped for maize biofortification. Science 319:330–333.  https://doi.org/10.1126/science.1150255 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Heying EK, Tanumihardjo JP, Vasic V et al (2014) Biofortified orange maize enhances b-cryptoxanthin concentrations in egg yolks of laying hens better than tangerine peel fortificant. J Agric Food Chem 62:11892–11900.  https://doi.org/10.1021/jf5037195 CrossRefPubMedGoogle Scholar
  35. Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218CrossRefGoogle Scholar
  36. Hossain F, Muthusamy V, Bhat JS et al (2016) Maize. In: Singh M, Kumar S (eds) Broadening the genetic base of grain cereals. Springer, New York, NY.  https://doi.org/10.1007/978-81-322-3613-9_1 CrossRefGoogle Scholar
  37. Hossain F, Muthusamy V, Pandey N et al (2018) Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. J Genet.  https://doi.org/10.1007/s12041-018-0914-z CrossRefGoogle Scholar
  38. Howe JA, Tanumihardjo SA (2006a) Evaluation of analytical methods for carotenoid extraction from biofortified maize (Zea mays sp.). J Agric Food Chem 54:7992–7997.  https://doi.org/10.1021/jf062256f CrossRefPubMedGoogle Scholar
  39. Howe JA, Tanumihardjo SA (2006b) Carotenoid-biofortified maize maintains adequate vitamin a status in Mongolian gerbils. J Nutr 136:2562–2567CrossRefGoogle Scholar
  40. IFPRI (2016) Global food policy report. International Food Policy Research Institute, Washington, DCGoogle Scholar
  41. Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC, Panel on Micronutrients. National Academies PressGoogle Scholar
  42. Kandianis CB, Stevens R, Liu W et al (2013) Genetic architecture controlling variation in grain carotenoid composition and concentrations in two maize populations. Theor Appl Genet 126:2879–2895.  https://doi.org/10.1007/s00122-013-2179-5 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kimura M, Kobori CN, Rodriguez-Amaya DB et al (2007) Screening and HPLC methods for carotenoids in sweetpotato, cassava and maize for plant breeding trials. Food Chem 100:1734–1746.  https://doi.org/10.1016/j.foodchem.2005.10.020 CrossRefGoogle Scholar
  44. Li ZH, Matthews PD, Burr B et al (1996) Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway. Plant Mol Biol 30:269–279.  https://doi.org/10.1007/BF00020113 CrossRefPubMedGoogle Scholar
  45. Li F, Murillo C, Wurtzel ET (2007) Maize Y9 encodes a product essential for 5-cis-carotene isomerization. Plant Physiol 144:1181–1189CrossRefGoogle Scholar
  46. Li S, Nugroho A, Rocheford T, White WS (2010) Vitamin A equivalence of the β-carotene in β-carotene- biofortified maize porridge consumed by women. Am J Clin Nutr 92:1105–1112.  https://doi.org/10.3945/ajcn.2010.29802 CrossRefPubMedGoogle Scholar
  47. Liu YQ, Davis CR, Schmaelzle ST et al (2012) β-Cryptoxanthin biofortified maize (Zea mays) increases β-cryptoxanthin concentration and enhances the color of chicken egg yolk. Poult Sci 91:432–438.  https://doi.org/10.3382/ps.2011-01719 CrossRefPubMedGoogle Scholar
  48. Liu L, Jeffers D, Zhang Y et al (2015) Introgression of the crtRB1 gene into quality protein maize inbred lines using molecular markers. Mol Breed.  https://doi.org/10.1007/s11032-015-0349-7
  49. Lividini K, Fiedler JL (2015) Assessing the promise of biofortification: a case study of high provitamin A maize in Zambia. Food Policy 54:65–77.  https://doi.org/10.1016/j.foodpol.2015.04.007 CrossRefGoogle Scholar
  50. Manjeru P, Biljon AV, Labuschagne M (2017) The development and release of maize fortified with provitamin A carotenoids in developing countries. Crit Rev Food Sci Nutr.  https://doi.org/10.1080/10408398.2017.1402751
  51. Matthews PD, Luo RB, Wurtzel ET (2003) Maize phytoene desaturase and ζ-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot 54:2215–2230.  https://doi.org/10.1093/jxb/erg235 CrossRefPubMedGoogle Scholar
  52. Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170.  https://doi.org/10.1016/j.pbi.2008.01.007 CrossRefPubMedGoogle Scholar
  53. Menkir A, White WS, Maziya-Dixon B et al (2008) Carotenoid diversity in tropical adapted yellow maize inbred lines. Food Chem 109:521–529CrossRefGoogle Scholar
  54. Menkir A, Maziya-Dixon B, Mengesha W et al (2017) Accruing genetic gain in provitamin A enrichment from harnessing diverse maize germplasm. Euphytica 213:1–12.  https://doi.org/10.1007/s10681-017-1890-8 CrossRefGoogle Scholar
  55. Moreno JA, Diaz-Gomez J, Nogareda C et al (2016) The distribution of carotenoids in hens fed on biofortified maize is influenced by feed composition, absorption, resource allocation and storage. Sci Rep 6:35346.  https://doi.org/10.1038/srep35346 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mugode L, Ha B, Kaunda A et al (2014) Carotenoid retention of biofortified provitamin a maize (Zea mays L.) after Zambian traditional methods of milling, cooking and storage. J Agric Food Chem 62:6317–6325.  https://doi.org/10.1021/jf501233f CrossRefPubMedGoogle Scholar
  57. Muthusamy V, Hossain F, Thirunavukkarasu N et al (2014) Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS One 9:1–22.  https://doi.org/10.1371/journal.pone.0113583 CrossRefGoogle Scholar
  58. Muthusamy V, Hossain F, Thirunavukkarasu N et al (2015a) Genetic variability and inter-relationship of kernel carotenoids among indigenous and exotic maize (Zea mays L.) inbreds. Cereal Res Commun 43:567–578.  https://doi.org/10.1556/0806.43.2015.012 CrossRefGoogle Scholar
  59. Muthusamy V, Hossain F, Thirunavukkarasu N et al (2015b) Molecular characterization of exotic and indigenous maize inbreds for biofortification with kernel carotenoids. Food Biotechnol 29:276–295.  https://doi.org/10.1080/08905436.2015.1059768 CrossRefGoogle Scholar
  60. Muthusamy V, Hossain F, Thirunavukkarasu N et al (2015c) Allelic variations for lycopene-ε-cyclase and β-carotene hydroxylase genes in maize inbreds and their utilization in β-carotene enrichment programme. Cogent Food Agric 1:1033141–1033141.  https://doi.org/10.1080/23311932.2015.1033141 CrossRefGoogle Scholar
  61. Muthusamy V, Hossain F, Thirunavukkarasu N et al (2016) Genetic analyses of kernel carotenoids in novel maize genotypes possessing rare allele of β-carotene hydroxylase gene. Cereal Res Commun 44:669–680CrossRefGoogle Scholar
  62. Muzhingi T, Langyintuo AS, Malaba LC et al (2008) Consumer acceptability of yellow maize products in Zimbabwe. Food Policy 33:352–361.  https://doi.org/10.1016/j.foodpol.2007.09.003 CrossRefGoogle Scholar
  63. Muzhingi T, Gadaga TH, Siwela AH et al (2011) Yellow maize with high β-carotene is an effective source of vitamin A in healthy Zimbabwean men. Am J Clin Nutr 94:510–519.  https://doi.org/10.3945/ajcn.110.006486 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767.  https://doi.org/10.1073/pnas.0901412106 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Odunitan-Wayas FA, Kolanisi U, Chimonyo M et al (2016) Effect of provitamin A biofortified maize inclusion on quality of meat from indigenous chickens. J Appl Poult Res 25:581–590CrossRefGoogle Scholar
  66. Ortiz-Monasterio JI, Palacios-Rojas N, Meng E et al (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307.  https://doi.org/10.1016/j.jcs.2007.06.005 CrossRefGoogle Scholar
  67. Owens BF, Gore MA, Magallanes-Lundback M et al (2014) A foundation for provitamin a biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716.  https://doi.org/10.1534/genetics.114.169979 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Palmer AC, Chileshe J, Hall AG et al (2016) Short term daily consumption of provitamin A carotenoid biofortified maize has limited impact on breast milk retinol concentration in Zambian women enrolled in a randomized controlled feeding trial. J Nutr.  https://doi.org/10.3945/jn.116.233
  69. Pillay K, Derera J, Siwela M et al (2011) Consumer acceptance of yellow, provitamin A-biofortified maize in KwaZulu-Natal. S Afr J Clin Nutr 24:186–191CrossRefGoogle Scholar
  70. Pillay K, Siwela M, Derera J et al (2014) Provitamin A carotenoids in biofortified maize and their retention during processing and preparation of South African maize foods. J Food Sci Technol 51:634–644.  https://doi.org/10.1007/s13197-011-0559-x CrossRefPubMedGoogle Scholar
  71. Pixley K, Palacios-Rojas N, Raman B et al (2013) In: Tanumihardjo S (ed) Carotenoids and human health, chapter: biofortification of maize with provitamin a carotenoids. Springer, New York, NY, pp 271–292.  https://doi.org/10.1007/978-1-62703-203-2_17 CrossRefGoogle Scholar
  72. Sarika K, Hossain F, Muthusamy V et al (2017) Exploration of novel opaque16 mutation as a source for high-lysine and -tryptophan in maize endosperm. Indian J Genet 77:59–64.  https://doi.org/10.5958/0975-6906.2017.00008.6 CrossRefGoogle Scholar
  73. Sarika K, Hossain F, Muthusamy V et al (2018) opaque16, a high lysine and tryptophan mutant, does not influence the key physico-biochemical characteristics in maize kernel. PLoS One 13(1):e0190945.  https://doi.org/10.1371/journal CrossRefPubMedPubMedCentralGoogle Scholar
  74. Senete CT, Guimaraes PED, Paes MCD et al (2011) Diallel analysis of maize inbred lines for carotenoids and grain yield. Euphytica 182:395–404CrossRefGoogle Scholar
  75. Sheftel J, Gannon BM, Davis CR (2017) Provitamin A-biofortified maize consumption increases seru xanthophylls and 13C-natural abundance of retinol in Zambian children. Exp Biol Med 242(15):1508–1514.  https://doi.org/10.1177/1535370217728500 CrossRefGoogle Scholar
  76. Shiferaw B, Prasanna BM, Hellin J et al (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur 3:307–327.  https://doi.org/10.1007/s12571-011-0140-5 CrossRefGoogle Scholar
  77. Simpungwe E (2014) Delivery of vitamin A maize in Zambia. Biofortification progress brief 37. International Food Policy Research Institute (IFPRI), Washington, DCGoogle Scholar
  78. Singh M, Lewis PE, Hardeman K et al (2003) Activator mutagenesis of the pink scutellum1/viviparous7 locus of maize. Plant Cell 15:874–884.  https://doi.org/10.1105/tpc.010249 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sivaranjani R, Prasanna BM, Hossain F et al (2013) Genetic variability for total carotenoid concentration in selected maize inbred lines. Indian J Agric Sci 83:431–436Google Scholar
  80. Sivaranjani R, Santha IM, Pandey N et al (2014) Microsatellite-based genetic diversity in selected exotic and indigenous maize (Zea mays L.) inbred lines differing in total kernel carotenoids. Indian J Genet 74:34–41Google Scholar
  81. Sommer A, Davidson FR (2002) Assessment and control of vitamin A deficiency: the Annecy Accords. J Nutr 132:S2845–S2850CrossRefGoogle Scholar
  82. Sommer A, West KP (1996) Vitamin A deficiency: health survival and vision. Oxford University Press, New YorkGoogle Scholar
  83. Sowa M, Yu J, Palacios-Rojas N et al (2017) Retention of carotenoids in biofortified maize flour and b-cryptoxanthin-enhanced eggs after household cooking. ACS Omega 2:7320–7328.  https://doi.org/10.1021/acsomega.7b01202 CrossRefGoogle Scholar
  84. Sun Z, Hans J, Walter MH et al (2008) Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta 228:789–801.  https://doi.org/10.1007/s00425-008-0781-6 CrossRefPubMedGoogle Scholar
  85. Suwarno WB, Pixley KV, Palacios-Rojas N et al (2014) Formation of heterotic groups and understanding genetic effects in a provitamin A biofortified maize breeding program. Crop Sci 54:14–24CrossRefGoogle Scholar
  86. Suwarno WB, Pixley KV, Palacios-Rojas N et al (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128:851–864.  https://doi.org/10.1007/s00122-015-2475-3 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Taleon V, Mugode L, Cabrera-Soto L et al (2017) Carotenoid retention in biofortified maize using different post-harvest storage and packaging methods. Food Chem 232:60–66.  https://doi.org/10.1016/j.foodchem.2017.03.158 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Tan BC, Schwartz SH, Zeevaart JA et al (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci U S A 94:12235–12240CrossRefGoogle Scholar
  89. Tanumihardjo SA (2011) Vitamin A: biomarkers of nutrition for development. Am J Clin Nutr 94:658–665.  https://doi.org/10.3945/ajcn.110.005777 CrossRefGoogle Scholar
  90. Thakkar SK, Failla ML (2008) Micellarization of β-carotene during in vitro digestion of maize and uptake by Caco-2 intestinal cells is minimally affected by xanthophylls. FASEB J 22:1105–1106Google Scholar
  91. Tiwari A, Prasanna BM, Hossain F et al (2012) Analysis of genetic variability for kernel carotenoid concentration in selected maize inbred lines. Indian J Genet 72:1–6Google Scholar
  92. UNICEF/WHO/World Bank Group Joint Child Malnutrition Estimates (2017) Levels and trends in child malnutrition. UNICEF, Washington, DCGoogle Scholar
  93. Vallabhaneni R, Wurtzel ET (2009) Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize. Plant Physiol 150:562–572.  https://doi.org/10.1104/pp.109.137042 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Vallabhaneni R, Gallagher CE, Licciardello N et al (2009) Metabolite Sorting of a germplasm collection reveals the hydroxylase3 locus as a new target for maize provitamin a biofortification. Plant Physiol 151:1635–1645.  https://doi.org/10.1104/pp.109.145177 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Vallabhaneni R, Bradbury LMT, Wurtzel ET et al (2010) The carotenoid dioxygenase gene family in maize, sorghum and rice. Arch Biochem Biophys 504:104–111CrossRefGoogle Scholar
  96. Vignesh M, Hossain F, Nepolean T et al (2012) Genetic variability for kernel beta -carotene and utilization of crtRB1 3′TE gene for biofortification in maize (Zea mays L.). Indian J Genet Plant Breed 72:189–194Google Scholar
  97. Vignesh M, Nepolean T, Hossain F et al (2013) Sequence variation in 3′UTR region of crtRB1 gene and its effect on β-carotene accumulation in maize kernel. J Plant Biochem Biotechnol 22:401–408.  https://doi.org/10.1007/s13562-012-0168-4 CrossRefGoogle Scholar
  98. Winter P, Kahl G (1995) Molecular marker technologies for plant improvement. World J Microbiol Biotechnol 11:438–448.  https://doi.org/10.1007/BF00364619 CrossRefPubMedGoogle Scholar
  99. Yadava DK, Choudhury PR, Hossain F et al (2017) Biofortified varieties: sustainable way to alleviate malnutrition. Indian Council of Agricultural Research, New Delhi, pp 1–32Google Scholar
  100. Yan J, Kandianis CB, Harjes CE et al (2010) Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet 42:322–327.  https://doi.org/10.1038/ng.551 CrossRefPubMedGoogle Scholar
  101. Zhang X, Pfei WH, Babu NPR et al (2012) Probability of success of breeding strategies for improving provitamin A content in maize. Theor Appl Genet 125:235–246.  https://doi.org/10.1007/s00122-012-1828-4 CrossRefPubMedGoogle Scholar
  102. Zhu C, Naqvi S, Breitenbach J et al (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci U S A 105:18232–18237CrossRefGoogle Scholar
  103. Zunjare RU, Chhabra R, Hossain F et al (2017a) Development and validation of multiplex-PCR assay for simultaneous detection of rare alleles of crtRB1 and lcyE governing higher accumulation of provitamin A in maize kernel. J Plant Biochem Biotechnol 27:1–7.  https://doi.org/10.1007/s13562-017-0432-8 CrossRefGoogle Scholar
  104. Zunjare RU, Hossain F, Muthusamy V et al (2017b) Influence of rare alleles of β-carotene hydroxylase and lycopene epsilon cyclase genes on accumulation of provitamin A carotenoids in maize kernels. Plant Breed 136:872–880.  https://doi.org/10.1111/pbr.12548 CrossRefGoogle Scholar
  105. Zunjare RU, Hossain F, Muthusamy V et al (2018a) Development of biofortified maize hybrids through marker-assisted stacking of β-carotene hydroxylase, lycopene-ε cyclase and opaque2 genes. Front Plant Sci 9:178.  https://doi.org/10.3389/fpls.2018.00178 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Zunjare RU, Chhabra R, Hossain F et al (2018b) Molecular characterization of 5′ UTR of the lycopene epsilon cyclase (lcyE) gene among exotic and indigenous inbreds for its utilization in maize biofortification. 3 Biotech 8:75.  https://doi.org/10.1007/s13205-018-1100-y CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hari Shanker Gupta
    • 1
  • Firoz Hossain
    • 1
  • Vignesh Muthusamy
    • 1
  • Rajkumar Uttamrao Zunjare
    • 1
  1. 1.ICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations