Quality Protein Maize for Nutritional Security

  • Firoz Hossain
  • Konsam Sarika
  • Vignesh Muthusamy
  • Rajkumar Uttamrao Zunjare
  • Hari Shanker Gupta


Malnutrition has emerged as one of the most serious health problem worldwide. Deficiency of essential micronutrients in the diet leads to abnormal growth and development of humans. The deficiency of nutrients contributes to global burden of disease, and significant loss in annual gross domestic product, thereby posing severe socio-economic loss. Considering the widespread ramification of malnutrition, UN-Sustainable Development Goals have taken a series of steps where nutrition plays pivotal role for progress in health, education, employment, female empowerment and poverty. It is estimated that alleviating malnutrition is one of the most cost-effective steps that offers benefit worth $16 with every $1 invested in proven nutrition programme. Though various avenues like food-fortification, medical-supplementation and dietary-diversification are in place to alleviate malnutrition, ‘biofortification’, a process of enriching crop plants with essential nutrients through breeding is regarded as the most sustainable and cost-effective approach. Protein-energy malnutrition (PEM) affects pregnant women, the elderly and children under the age of 5 years the most, and among various micronutrient deficiencies it accounts for highest number of deaths, globally. Maize serves as an important source of energy, proteins and several essential nutrients worldwide. However, the endosperm maize protein is deficient in two essential amino acids viz. lysine and tryptophan which lower the quality of the protein. Quality protein maize (QPM) by virtue of mutant opaque2 (o2) gene possesses nearly double the amount of lysine and tryptophan, and consumption of high-quality protein in QPM helps combating PEM. Several QPM hybrids/OPVs have been developed worldwide through conventional breeding, however with the advent of genomics the pace of development of QPM has been accelerated. Novel opaque16 (o16) gene that enhances half of lysine and tryptophan in o2 background has emerged as a boon to the breeders as it does not affect the kernel opaqueness. The combination of o2- and o16-based QPM hybrids is now available with higher nutritional value. Key genes for enhancement of provitamin-A and vitamin-E have now been combined with QPM. These multinutrient rich QPM hybrids hold great potential to address deficiency of protein quality, provitamin-A and -E simultaneously through a holistic approach. Here, we present the worldwide status of development, acceptance and challenges in the adoption of QPM.


Essential amino acids Molecular breeding Micronutrients QPM hybrids 


  1. Akalu G, Tafesse S, Gunaratna NS, De Groote H et al (2010) The effectiveness of quality protein maize in improving the nutritional status of young children in the Ethiopian highlands. Food Nutr Bull 31:418–430PubMedCrossRefGoogle Scholar
  2. Azama K, Abe S, Sugimoto H, Davis E et al (2003) Lysine-containing proteins in maize endosperm: a major contribution from cytoskeleton-associated carbohydrate-metabolizing enzymes. Planta 217:628–638PubMedCrossRefGoogle Scholar
  3. Babu R, Nair SK, Kumar A, Venkatesh S, Sekhar JC, Singh NN, Srinivasan G, Gupta HS et al (2005) Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theor Appl Genet 111:888–897PubMedCrossRefGoogle Scholar
  4. Bain LE, Awah PK, Geraldine N, Kindong NP, Sigal Y, Bernard N et al (2013) Malnutrition in Sub-Saharan Africa: burden, causes and prospects. Pan Afr Med J 15:1–9. CrossRefGoogle Scholar
  5. Balconi C, Hartings H, Lauria M, Pirona R, Rossi V, Motto M et al (2007) Gene discovery to improve maize grain quality traits. Maydica 52:357–373Google Scholar
  6. Bauman LF (1975) Germ and endosperm variability, mineral elements, oil content and modifier genes in opaque-2 genotypes. In: High quality protein maize. Hutchinson Ross Publishing Co, Stroudsburg, PA, pp 143–147Google Scholar
  7. Bjarnason M, Vasal SK (1992) Breeding of quality protein maize. Plant Breed Rev 9:181–216Google Scholar
  8. Bjarnason M, Shoirt K, Vasal SK, Villegas E et al (1988) Genetic improvement of various quality protein maize (QPM) populations. Agronomy abstract. American Society of Agronomy, Madison, WI, p 74Google Scholar
  9. Black RE, Victora CG, Walker SP et al (2013) Maternal and child under nutrition and overweight in low-income and middle-income countries. Lancet 382:427–451PubMedCrossRefGoogle Scholar
  10. Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bouis HE, Christine H, Bonnie M et al (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Improving diets nutrition food-based approaches, vol 32, pp 202–215Google Scholar
  12. Bressani R (1991) Protein quality of high lysine maize for humans. Cereal Foods World 36:806–811Google Scholar
  13. Bressani R (1992) Nutritional value of high-lysine maize in humans. In: Mertz ET (ed) Quality protein maize. American Association of Cereal Chemists, St. Paul, MN, pp 205–224Google Scholar
  14. Burgoon KG, Hansen JA, Knabe DA, Bockholt AJ et al (1992) Nutritional value of quality protein maize for starter and finisher swine. J Anim Sci 70:811–817PubMedCrossRefGoogle Scholar
  15. Chakraborti M, Prasanna BM, Hossain F, Singh A et al (2011a) Evaluation of single cross quality protein maize (QPM) hybrids for kernel iron and zinc concentrations. Indian J Genet 71:312–319Google Scholar
  16. Chakraborti M, Prasanna BM, Hossain F, Mazumdar S, Singh AM, Guleria SK, Gupta HS et al (2011b) Identification of kernel iron- and zinc-rich maize inbreds and analysis of genetic diversity using microsatellite markers. J Plant Biochem Biotechnol 20:224–233CrossRefGoogle Scholar
  17. Choi SB, Wang CL, Muench DG, Ozawa K, Franceschi VR, Wu YJ, Okita TW et al (2000) Messenger RNA targeting of rice seed storage proteins to specific ER subdomains. Nature 407:765–767PubMedCrossRefGoogle Scholar
  18. Coleman CE, Larkins BA (1999) The prolamins of maize. In: Shewry P, Casey R (eds) Seed proteins. Kluwer Academic, Dordrecht, pp 109–139. CrossRefGoogle Scholar
  19. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK et al (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement. Euphytica 142:169–196CrossRefGoogle Scholar
  20. Danson J, Mbogori M, Kimani M et al (2006) Marker-assisted introgression of opaque2 gene into herbicide tolerant elite maize inbred lines. Afr J Biotechnol 5:2417–2422Google Scholar
  21. Das AK, Hossain F, Muthusamy V, Zunjare RU, Chauhan HS, Baveja A, Jaiswal SK, Bhata JS, Guleria SK, Saha S, Singh AK et al (2018) Genetic analyses of kernel tocopherols in maize possessing novel allele of γ-tocopherol methyl transferase (ZmVTE4). International symposium on biodiversity and biobanking – biodiverse 2018. 27–29 Jan 2018. IIT Guwahati, Guwahati, pp 112–113Google Scholar
  22. FAO/WHO/UN (1985) Expert consultation. WHO techncal report series no. 724. WHO, GenevaGoogle Scholar
  23. Feng LN, Zhu J, Wang G, Tang YP, Chen HJ, Jin WB et al (2009) Expressional profiling study revealed unique expressional patterns and dramatic expressional divergence of maize alpha-zein super gene family. Plant Mol Biol 69:649–659PubMedCrossRefGoogle Scholar
  24. Frisch M, Bohn M, Melchinger AE et al (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301CrossRefGoogle Scholar
  25. Galili G (2002) New insights into the regulation and functional significance of lysine metabolism in plants. Annu Rev Plant Biol 7:153–156Google Scholar
  26. Geetha KB, Lending CR, Lopes MA, Wallace JC, Larkins BA et al (1991) Opaque-2 modifiers increase gamma-zein synthesis and alter its spatial distribution in maize endosperm. Plant Cell 3:1207–1219PubMedPubMedCentralGoogle Scholar
  27. Geevers HO, Lake JK (1992) Development of modified opaque2 maize in South Africa. In: Mertz ET (ed) Quality protein maize. American Association of Cereal Chemists, St. Paul, MN, pp 49–78Google Scholar
  28. Gibbon BC, Wang X, Larkins BA et al (2003) Altered starch structure is associated with endosperm modification in quality protein maize. Proc Natl Acad Sci U S A 100:15329–15334PubMedPubMedCentralCrossRefGoogle Scholar
  29. Global Nutrition Report (2017)
  30. Glover DV (1988) Corn protein and starch – genetics, breeding, and value in foods and feeds. In: Proceedings of the 43rd annual corn and sorghum research conference. American Seed Trade Association, Chicago. IL, pp 106–130Google Scholar
  31. Glover DV, Mertz ET (1987) Corn. In: Olson RA, Frey OJ (eds) Nutritional quality of cereal grains: genetic and agronomic improvement. ASA-CSSA-SSSA, Madison, WI, pp 183–236Google Scholar
  32. Graham GG, Lembake J, Morales E et al (1990) Quality protein maize as the sole source of dietary protein and fat for rapidly growing young children. Pediatrics 85:85–91PubMedPubMedCentralGoogle Scholar
  33. Gunaratna NS, De Groote H, Nestel P, Pixley KV, McCabe GP et al (2010) A meta-analysis of community-level studies on quality protein maize. Food Policy 35:202–210CrossRefGoogle Scholar
  34. Gupta HS, Raman B, Agrawal PK, Mahajan V, Hossain F, Nepolean T et al (2013) Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque2 allele. Plant Breed 132:77–82CrossRefGoogle Scholar
  35. Gupta HS, Hossain F, Muthusamy V et al (2015a) Biofortification of maize: an Indian perspective. Indian J Genet 75:1–22Google Scholar
  36. Gupta HS, Hossain F, Nepolean T, Vignesh M, Mallikarjuna MG et al (2015b) Understanding genetic and molecular bases of Fe and Zn accumulation towards development of micronutrient-enriched maize. In: Rakshit A et al (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi. CrossRefGoogle Scholar
  37. Gutierrez-Rojas A, Betran J, Scott MP, Atta H, Menz M et al (2010) Quantitative trait loci for endosperm modification and amino acid contents in quality protein maize. Crop Sci 50:870–879CrossRefGoogle Scholar
  38. Harper AE, Yoshimura NN (1993) Protein quality, amino acid balance, utilization, and evaluation of diets containing amino acids as therapeutic agents. Nutrition 9:460–469PubMedPubMedCentralGoogle Scholar
  39. Hellin J, Erenstein O (2009) Maize poultry value chains in India: implications for research and development. J New Seeds 10:245–269CrossRefGoogle Scholar
  40. Holding DR (2014) Recent advances in the study of prolamin storage protein organization and function. Front Plant Sci 5:276. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Holding DR, Hunter BG, Jung T, Gibbon BR, Clark CF, Bharti AR, Messing J, Hamaker BR, Larkins BA et al (2008) Genetic analysis of opaque-2 modifier loci in quality protein maize. Theor Appl Genet 117:157–170PubMedCrossRefPubMedCentralGoogle Scholar
  42. Holding DR, Hunter BG, Klinger JP, Wu S, Gua X, Gibbon BC, Wu R, Schulze JM, Jung R, Larkins BA et al (2011) Characterization of opaque-2 modifier QTLs and candidate genes in recombinant inbred lines derived from K0326Y quality protein maize. Theor Appl Genet 22:783–794CrossRefGoogle Scholar
  43. Hospital F, Chevalet C, Mulsant P et al (1992) Using markers in gene introgression programs. Genetics 132:1199–1210PubMedPubMedCentralGoogle Scholar
  44. Hossain F, Prasanna BM, Sharma RK, Kumar P, Singh BB et al (2007) Evaluation of quality protein maize (QPM) genotypes for resistance to stored grain weevil, Sitophilus oryzae. Int J Trop Insect Sci 27:114–121CrossRefGoogle Scholar
  45. Hossain F, Prasanna BM, Kumar R, Singh BB et al (2008a) Genetic analysis of kernel modification in quality protein maize (QPM) genotypes. Indian J Genet 68:1–9Google Scholar
  46. Hossain F, Prasanna BM, Kumar R, Singh BB et al (2008b) The genotype × pollination mode interaction affects kernel modification in quality protein maize (QPM) genotypes. Indian J Genet 68:132–138Google Scholar
  47. Hossain F, Muthusamy V, Bhat JS, Jha SK, Zunjare R, Das A, Sarika K, Kumar R et al (2016) Maize: utilization of genetic resources in maize improvement. In: Singh M, Kumar S (eds) Broadening the genetic base of grain Cereals. Springer, New York, NY. CrossRefGoogle Scholar
  48. Hossain F, Muthusamy V, Pandey N, Vishwakarma AK, Baveja A, Zunjare RU et al (2018) Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. J Genet. PubMedCrossRefPubMedCentralGoogle Scholar
  49. Huang S, Adams WR, Zhou Q, Malloy KP, Voyles DA, Anthony J et al (2004) Improving nutritional quality of maize proteins by expressing sense and antisense zein genes. J Agric Food Chem 52:1958–1964PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hunter BG, Beatty MK, Singletary GW, Hamaker BR, Dilkes BP, Larkins BA et al (2002) Maize opaque endosperm mutations create extensive changes in patterns of gene expression. Plant Cell 14:2591–2612PubMedPubMedCentralCrossRefGoogle Scholar
  51. IFPRI (2016) Global food policy report. International Food Policy Research Institute, Washington, DCGoogle Scholar
  52. Jensen GL, Compher C, Sullivan DH et al (2013) Recognizing malnutrition in adults: definitions and characteristics, screening, assessment, and team approach. J Parenter Enter Nutr 37:802–807CrossRefGoogle Scholar
  53. Jha UC, Bhat JS, Patil BS, Hossain F, Barh D et al (2015) Functional genomics: applications in plant science. In: PlantOmics: the omics of plant science. Springer, New Delhi, pp 65–111. CrossRefGoogle Scholar
  54. Jia M, Wu H, Clay KL et al (2013) Identification and characterization of lysine-rich proteins and starch biosynthesis genes in the opaque2 mutant by transcriptional and proteomic analysis. BMC Plant Biol 13:60PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jompuk C, Cheuchart P, Jompuk P et al (2011) Improved tryptophan content in maize with opaque-2 gene using marker assisted selection (MAS) in backcross and selfing generations. Kasetsart J (Nat Sci) 45:666–674Google Scholar
  56. Kassahun B, Prasanna BM (2003) Simple sequence repeat polymorphism in quality protein maize (QPM) lines. Euphytica 129:337–344CrossRefGoogle Scholar
  57. Kim CS, Gibbon BC, Gillikin JW, Larkins BA, Boston RS, Jung R et al (2006) The maize mucronate mutation is a deletion in the 16-kDa gamma zein gene that induces the unfolded protein response. Plant J 48:440–451PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kostadinovic M, Ignjatovic-Micic D, Vancetovic J et al (2016) Development of high tryptophan maize near isogenic lines adapted to temperate regions through marker assisted selection – impediments and benefits. PLoS One 11(12):e0167635PubMedPubMedCentralCrossRefGoogle Scholar
  59. Krivanek A, Groote H, Gunaratna N, Diallo A, Freisen D et al (2006) Breeding and disseminating quality protein maize for Africa. Afr J Biotechnol 6:312–324Google Scholar
  60. Latham MC (1997) Body composition, the functions of food, metabolism and energy. In: Human nutrition in the developing world. Food and nutrition series – no. 29. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  61. Lea PJ, Azevedo RA (2003) Primary products: plant amino acids. In: Thomas B, Murphy SJ, Murray BG (eds) Encyclopaedia of applied plant sciences, vol 3. Elsevier, Amsterdam, pp 871–883CrossRefGoogle Scholar
  62. Lebaka NG, Coors JG, Shaver RD, Bertics S, Gutierrez-Rojas A, Menz A, Betran J et al (2013) Quantitative trait loci for ruminal degradability in opaque endosperm2 (o2) maize. Crop Sci 53:378–384CrossRefGoogle Scholar
  63. Lending CR, Larkins BA (1989) Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1:1011–1023PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lending CR, Larkins BA (1992) Effect of the floury2 locus on protein body formation during maize endosperm development. Protoplasma 171:123–133CrossRefGoogle Scholar
  65. Liu H, Shi J, Sun C, Gong H, Fan X, Qiu F, Huang X, Feng Q, Zheng X, Yuan X, Li C, Zhanga Z, Deng Y, Wang J, Pan G, Han B, Lai J, Wu Y et al (2016) Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize. PNAS 113:4964–4969PubMedCrossRefGoogle Scholar
  66. Locatelli S, Piatti P, Motto M, Rossi V et al (2009) Chromatin and DNA modifications in the Opaque2-mediated regulation of gene transcription during maize endosperm development. Plant Cell 21:1410–1427PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lopes MA, Larkins BA (1995) Genetic analysis of opaque2 modifier gene activity in maize endosperm. Theor Appl Genet 91:274–281PubMedCrossRefGoogle Scholar
  68. Lopez-Valenzuela JA, Gibbon BC, Holding DR, Larkins BA et al (2004) Cytoskeletal proteins are coordinately increased in maize genotypes with high levels of eEF1A. Plant Physiol 135:1784–1797PubMedPubMedCentralCrossRefGoogle Scholar
  69. Magulama EE, Sales EK (2009) Marker-assisted introgression of opaque2 gene into elite maize inbred lines. USM R&D 17:131–135Google Scholar
  70. Mallikarjuna MG, Thirunavukkarasu N, Hossain F, Bhat JS, Jha SK, Rathore A, Agrawal PK, Pattanayak A, Reddy SS, Gularia SK, Singh AM, Manjaiah KM, Gupta HS et al (2015) Stability performance of inductively coupled plasma mass spectrometry-phenotyped kernel minerals concentration and grain yield in maize in different agro-climatic zones. PLoS One. PubMedPubMedCentralCrossRefGoogle Scholar
  71. Manna R, Okello DK, Imanywoha J et al (2006) Enhancing Introgression of the opaque-2 trait into maize lines using simple sequence repeats. Afr Crop Sci J 13:215–226Google Scholar
  72. Medici LO, Azevedo RA, Smith RJ, Lea PJ et al (2004) The influence of nitrogen supply on antioxidant enzymes in plant roots. Funct Plant Biol 31:1–9CrossRefGoogle Scholar
  73. Mertz ET, Bates LS, Nelson OE et al (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145:279–280PubMedCrossRefGoogle Scholar
  74. Moehn S, Bertolo RF, Pencharz PB, Ball RO et al (2004) Indicator amino acid oxidation responds rapidly to changes in lysine or protein intake in growing and adult pigs. J Nutr 134:836–841PubMedCrossRefGoogle Scholar
  75. Morley EJ (2016) Protein-energy undernutrition (PEU). Accessed 10 Oct 2017
  76. Morton KJ, Jia S, Zhang C, Holding DR et al (2016) Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins. J Exp Bot 67:erv532. CrossRefGoogle Scholar
  77. Motto M, Maddolini M, Panziani G, Brembilla M, Marrota R, Di Fonzo N et al (1988) Molecular cloning of the o2-m5 allele of Zea mays using transposon tagging. Mol Gen Genet 121:488–494CrossRefGoogle Scholar
  78. Mpofu SJ, Msagati TAM, Krause RWM (2014) Cytotoxicity, phytochemical analysis and antioxidant activity of crude extracts from rhizomes of Elephantorrhiza elephantina and Pentanisia prunelloides. Afr J Tradit Complement Altern Med 11:34–52PubMedGoogle Scholar
  79. Muller O, Krawinkel M (2005) Malnutrition and health in developing countries. CMAJ 173:279–286PubMedPubMedCentralCrossRefGoogle Scholar
  80. Muthusamy V, Hossain F, Thirunavukkarasu N, Choudhary M, Saha S, Bhat JS et al (2014) Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS One 9:1–22CrossRefGoogle Scholar
  81. Neeraja CN, Ravindra BV, Ram S, Hossain F, Hariprasanna K, Rajpurohit BS, Prabhakar LT, Prasad KS, Sandhu JS, Datta SK et al (2017) Biofortification in cereals – progress and Prospects. Curr Sci 113:1050–1057CrossRefGoogle Scholar
  82. Nelson OE, Mertz ET, Bates LS et al (1965) Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science 150:1469–1470PubMedCrossRefGoogle Scholar
  83. Nuss ET, Tanumihardjo SA (2011) Quality protein maize for africa: closing the protein inadequacy gap in vulnerable populations. Adv Nutr 2:217–222PubMedPubMedCentralCrossRefGoogle Scholar
  84. Nyakurwa CS, Gasura E, Mabasa S (2017) Potential for quality protein maize for reducing protein energy undernutrition in maize dependent sub-saharan African countries: a review. African Crop Sci J 25:521–537CrossRefGoogle Scholar
  85. Onimisi PA, Dafwang II, Omage JJ, Onyibe JE et al (2008) Apparent digestibility of feed nutrients, total tract and ileal amino acids of broiler chicken fed quality protein maize (obatampa) and normal maize. Int J Poult Sci 7:959–963CrossRefGoogle Scholar
  86. Osei SA, Okai DB, Ahenkora K, Dzah BD, Haag W, Twumasi-Afriyie S, Tua AK et al (1994) Quality protein maize as main source ofenergy and amino acids in the diets of starter pigs. Proc Ghanan Anim Sci Symp 22:31–36Google Scholar
  87. Pandey N, Hossain F, Kumar K, Vishwakarma AK, Nepolean T, Vignesh M, Manjaiah KM, Agrawal PK, Guleria SK, Reddy SS, Gupta HS et al (2015) Microsatellite marker-based genetic diversity among quality protein maize (QPM) inbred lines differing for kernel iron and zinc. Mol Plant Breed 6:1–10Google Scholar
  88. Pandey N, Hossain F, Kumar K, Vishwakarma AK, Muthusamy V, Saha S, Agrawal PK, Guleria SK, Reddy SS, Thirunavukkarasu N Gupta HS et al (2016) Molecular characterization of endosperm- and amino acids – modifications among quality protein maize inbreds. Plant Breed 135:47–54CrossRefGoogle Scholar
  89. Pandey N, Hossain F, Muthusamy V, Vishwakarma AK, Zunjare RU et al (2018) Haplotypes of recessive opaque2 allele in exotic- and indigenous – quality protein maize inbreds. Indian J Agric Sci 88:253–259Google Scholar
  90. Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:S88–S105CrossRefGoogle Scholar
  91. Powell WW, Machery GC, Provan J et al (1996) Polymorphism revealed by simple sequence repeats. Trends Genet 1:76–83Google Scholar
  92. Prasanna BM, Vasal SK, Kassahun B, Singh NN et al (2001) Quality protein maize. Curr Sci 81:1308–1319Google Scholar
  93. Qi G, Diao Q, Tu Y, Wu S, Zhang S et al (2004) Nutritional evaluation and utilization of quality protein maize (QPM) in animal feed. In: Protein sources for the animal feed industry. Expert consultation and workshop, 2002. FAO, BangkokGoogle Scholar
  94. Qiao Z, Qi W, Wang Q, Feng Y, Yang Q, Zhang N et al (2016) ZmMADS47 regulates zein gene transcription through interaction with Opaque2. PLoS Genet 12:e1005991. CrossRefPubMedPubMedCentralGoogle Scholar
  95. Ribaut JM, Morris M, Dreher K, Khairallah M et al (2003) Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection. Mol Breed 11:235–247CrossRefGoogle Scholar
  96. Riedel WJ, Sobczak S, Schmitt JA et al (2003) Tryptophan modulation and cognition. Adv Exp Med Biol 527:207–213PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sarika K, Hossain F, Muthusamy V, Baveja A, Zunjare R, Goswami R et al (2017) Exploration of novel opaque16 mutation as a source for high -lysine and -tryptophan in maize 534 endosperm. Indian J Genet 77:59–64Google Scholar
  98. Sarika K, Hossain F, Muthusamy V, Zunjare RU, Baveja A, Goswami R et al (2018) Opaque16, a high lysine and tryptophan mutant, does not influence the key physico-biochemical characteristics in maize kernel. PLoS One 13:e0190945. CrossRefPubMedPubMedCentralGoogle Scholar
  99. Schmidt RJ, Burr FA, Burr B et al (1987) Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science 238. PubMedCrossRefGoogle Scholar
  100. Schmidt RJ, Burr FA, Aukerman MJ, Burr B et al (1990) Maize regulatory gene opaque-2 encodes a protein with a leucine zipper motif that binds to zein DNA. Proc Natl Acad Sci U S A 87:46–50PubMedPubMedCentralCrossRefGoogle Scholar
  101. Segal G, Song R, Messing J et al (2003) A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165:387–397PubMedPubMedCentralGoogle Scholar
  102. Serna-Saldívar SO, Gomez MH, Islas-Rubio AR, Bockholt AJ, Rooney LW et al (1992) The alkaline processing properties of quality protein maize. In: Mertz E (ed) Quality protein maize. American Association of Cereal Chemists, Eagan, MN, pp 273–293Google Scholar
  103. Shewry PR, Thatam AS (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J 267:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  104. Shiferaw B, Prasanna BM, Hellin J, Banziger M et al (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security 3:307–327CrossRefGoogle Scholar
  105. Singh NN, Venkatesh S (2006) Development of quality protein maize inbred lines. In: Kaloo G, Rai M, Singh M, Kumar S (eds) Heterosis in crop plants. Research Book Center, New Delhi, pp 102–113Google Scholar
  106. Soave C, Salamini F (1984) Organization and regulation of zein genes in maize endosperm. Philos Trans R Soc Lond Ser B Biol Sci 304:341–343CrossRefGoogle Scholar
  107. Teklewold A, Wegary D, Tadesse A, Tadese B, Banta K, Friesen D et al (2015) Quality protein maize: a guide to the technology and its promotion in ethiopia. CIMMYT, El BatánGoogle Scholar
  108. Tome D, Bos C (2007) Lysine requirement through the human life cycle. J Nutr 137:1642–1645CrossRefGoogle Scholar
  109. Tsai CY, Huber DM, Warren HL et al (1978) Relationship of kernel sink for N to maize productivity. Crop Sci 18:399–404CrossRefGoogle Scholar
  110. Varshney RK, Ribaut JM, Buckler ES, Tuberosa R, Rafalski JA, Langridge P et al (2012) Can genomics boost productivity of orphan crops? Nat Biotechnol 30:1172–1176PubMedCrossRefGoogle Scholar
  111. Vasal SK (2000) The quality protein maize story. Food Nutr Bull 21:445–450CrossRefGoogle Scholar
  112. Vasal SK (2001) High quality protein corn. In: Hallauer A (ed) Speciality corn, 2nd edn. CRC Press, Boca Raton, FL, pp 85–129Google Scholar
  113. Vasal SK, Villegas E, Bajarnason M, Gelaw B, Geirtz P et al (1980) Genetic modifiers and breeding strategies in developing hard endosperm opaque-2 materials. In: Pollmer WG, Philips RH (eds) Improvement of quality traits for silage use. Martinus Nijhoff Publ, The Hague, pp 37–71Google Scholar
  114. Vasal SK, Villegas E, Tang CY et al (1984) Recent advances in the development of quality protein maize germplasm at CIYMMT. In: Cereal grain improvement. IAEA, Vienna, pp 167–189Google Scholar
  115. Villegas E, Vasal SK, Bjarnason M et al (1992) Quality protein maize – what is it and how was it developed? In: Mertz ET (ed) Quality protein maize. American Association of Cereal Chemists, Eagan, MN, pp 27–48Google Scholar
  116. Visscher PM, Haley CS, Thompson R et al (1996) Marker assisted introgression in backcross breeding programs. Genetics 144:1923–1932PubMedPubMedCentralGoogle Scholar
  117. Vitale AJ, Denecke J (1999) The endoplasmic reticulum gateway of the secretory pathway. Plant Cell 11:615–628PubMedPubMedCentralGoogle Scholar
  118. Vivek BS, Krivanek AF, Palacios-Rojas N, Twumasi-Afiriye S, Diallo AO et al (2008) Breeding quality protein maize (QPM) cultivars: protocols for developing QPM cultivars. CIMMYT, El BatánGoogle Scholar
  119. Wall JS, Bietz JA (1987) Differences in corn endosperm protein in developing seeds of normal and opaque-2 corn. Cereal Chem 64:275–280Google Scholar
  120. Wallace JC, Lopes MA, Paiva E, Larkins BA et al (1990) New methods for extraction and quantitation of zeins reveal a high content of γ-Zein in modified opaque2 maize. Plant Physiol 92:191–196PubMedPubMedCentralCrossRefGoogle Scholar
  121. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84PubMedCrossRefGoogle Scholar
  122. WHO/FAO/UN (2007) Protein and amino acid requirements in human nutrition. 1764 report of a joint WHO/FAO/UN expert consultation, WHO technical report series, no 935. WHO, GenevaGoogle Scholar
  123. Wu Y, Messing J (2010) RNA interference-mediated change in protein body morphology and seed opacity through loss of different zein proteins. Plant Physiol 153:337–347PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wu Y, Holding DR, Messing J et al (2010) γ-Zeins are essential for endosperm modification in quality protein maize. Proc Natl Acad Sci U S A 107:12810–12815PubMedPubMedCentralCrossRefGoogle Scholar
  125. Xu JH, Messing J (2009) Amplification of prolamin storage protein genes in different subfamilies of the Poaceae. Theor Appl Genet 119:1397–1412PubMedCrossRefGoogle Scholar
  126. Yadav OP, Hossain F, Karjagi CG, Kumar B, Zaidi PH, Jat SL, Chawla JS, Kaul J, Hooda KS, Kumar O, Yadava P, Dhillon BS et al (2015) Genetic improvement of maize in India: retrospect and prospects. Agric Res 4:325–338Google Scholar
  127. Yadava DK, Choudhury PK, Hossain F, Kumar D et al (2017) Biofortified varieties: sustainable way to alleviate malnutrition. Indian Council of Agricultural Research, New Delhi, pp 7–10Google Scholar
  128. Yang W, Zheng Y, Zheng W, Feng R et al (2005) Molecular genetic mapping of a high-lysine mutant gene (opaque-16) and the double recessive effect with opaque2 in maize. Mol Breed 15:257–269CrossRefGoogle Scholar
  129. Yang L, Wang W, Yang W et al (2013) Marker-assisted selection for pyramiding the waxy and opaque16 genes in maize using cross and backcross schemes. Mol Breed 31:767–775CrossRefGoogle Scholar
  130. Zhang WL, Yang WP, Chen ZW, Wang MC, Yang LQ, Cai YL et al (2010) Molecular marker-assisted selection for o2 introgression lines with o16 gene in corn. Acta Agron Sin 36:1302–1309Google Scholar
  131. Zhang W, Yang W, Wang M, Wang W, Zeng G, Chen Z, Cai Y et al (2013) Increasing lysine content of waxy maize through introgression of opaque2 and opaque16 genes using molecular assisted and biochemical development. PLoS One 8:1–10Google Scholar
  132. Zhang Z, Yang J, Wu Y et al (2015) Transcriptional regulation of zein gene expression in maize through the additive and synergistic action of opaque2, prolamine-box binding factor, and O2 heterodimerizing proteins. Plant Cell 27:1162–1172PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zimmerman AO, Millear AI, Stubbs RW et al (2018) Mapping child growth failure in Africa between 2000 and 2015. Nature 555:41–47CrossRefGoogle Scholar
  134. Zunjare RU, Hossain F, Muthusamy V, Baveja A, Chauhan HS, Thirunavukkarasu N, Saha S, Gupta HS et al (2017) Influence of rare alleles of β-carotene hydroxylase (crtRB1) and lycopene epsilon cyclase (lcyE) genes on accumulation of provitamin A carotenoids in maize kernels. Plant Breed. CrossRefGoogle Scholar
  135. Zunjare RU, Hossain F, Muthusamy V, Baveja A et al (2018) Development of biofortified maize hybrids through marker-assisted stacking of β-carotene hydroxylase, lycopene-ε-cyclase and opaque2 genes. Front Plant Sci 9:1–12. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Firoz Hossain
    • 1
  • Konsam Sarika
    • 2
  • Vignesh Muthusamy
    • 1
  • Rajkumar Uttamrao Zunjare
    • 1
  • Hari Shanker Gupta
    • 1
  1. 1.ICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.ICAR Research Complex for Northeast Hill RegionUmiamIndia

Personalised recommendations