Genomic Interventions for Biofortification of Food Crops

  • Abhishek Bohra
  • Uday Chand Jha
  • Rintu Jha
  • S. J. Satheesh Naik
  • Alok Kumar Maurya
  • Prakash G. Patil


Micronutrient deficiencies are reported to affect more than two billion people worldwide. Importantly, people inhabiting rural and semi-urban areas are more vulnerable to these nutritional disorders. In view of the inadequacy of nutrition-specific approaches that rely on changing the food-consumption behaviour, nutrition-sensitive interventions like crop biofortification offer sustainable means to address the problem of malnutrition worldwide. Biofortification enhances nutrient density in crop plants during plant growth through genetic or agronomic practices. Traditional plant breeding techniques and genetic engineering approaches are key to crop biofortification. Here, we summarize recent advances in genomics that have contributed towards the progress of crop biofortification. Rapidly evolving technologies like high-density genotyping assays have accelerated harnessing gains associated with natural variation of mineral contents available in crop wild relatives and landraces. The genetic nature of the mineral composition is being resolved, thus furthering the understanding of trait architecture. Conventional QTL mapping techniques have made significant contribution towards this end. New molecular breeding techniques like genome-wide association study (GWAS) and genomic selection (GS) are opening new avenues for capturing the maximum variation for elemental content, majorly explained by small-effect QTL. The potential of GS in this respect is enhanced several fold with the increasing availability of rapid generation advancement systems and high-throughput elemental profiling platforms. Evidences from latest research involving cutting-edge omics techniques including metabolomics help better elucidate nutrient metabolism in plants. Increasing the efficiency of biofortification breeding could enhance the rate of delivery of nutritionally rich cultivars of food crops, which will be easily accessible to a larger segment of nutrient-deficient people in the most cost-efficient way.


Biofortification Crop Nutrient QTL Gene Breeding Malnutrition 


  1. Abid N, Khatoon A, Maqbool A, Irfan M, Bashir A, Asif I, Shahid M, Saeed A, Brinch-Pedersen H, Malik KA (2017) Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains. Transgenic Res 26:109–122PubMedCrossRefGoogle Scholar
  2. Adams ML, Lombi E, Zhao FJ, McGrath SP (2002) Evidence of low selenium concentrations in UK breadmaking wheat grain. J Sci Food Agric 82:1160–1165CrossRefGoogle Scholar
  3. Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin a content. J Exp Bot 59:3551–3562PubMedPubMedCentralCrossRefGoogle Scholar
  4. Amiri R, Bahraminejad S, Sasani S, Jalali-Honarmand S, Fakhri R (2015) Bread wheat genetic variation for grain’s protein, iron and zinc concentrations as uptake by their genetic ability. Eur J Agron 67:20–26CrossRefGoogle Scholar
  5. Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar×Swarna RILs. Gene 508:233–240PubMedCrossRefGoogle Scholar
  6. Anuradha N, Satyavathi CT, Bharadwaj C, Nepolean T, Sankar SM, Singh SP, Meena MC, Singhal T, Srivastava RK (2017) Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front Plant Sci 8:412PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ates D, Sever T, Aldemir S, Yagmur B, Temel HY, Kaya HB et al (2016) Identification QTLs controlling genes for Se uptake in lentil seeds. PLoS One 11:e0149210PubMedPubMedCentralCrossRefGoogle Scholar
  8. Badigannavar A, Girish G, Ramachandran V, Ganapathi TR (2016) Genotypic variation for seed protein and mineral content among post-rainy season-grown sorghum genotypes. Crop J 4:61–67CrossRefGoogle Scholar
  9. Bänziger M, Long J (2000) The potential for increasing the iron and zinc density of maize through plant-breeding. Food Nutr Bull 21:397–400CrossRefGoogle Scholar
  10. Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H, Nishizawa NK (2013) The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice 6:31PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baxter I (2009) Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381–386PubMedPubMedCentralCrossRefGoogle Scholar
  12. Baxter I, Ouzzani M, Orcun S, Kennedy B, Jandhyala SS, Salt DE (2007) Purdue ionomics information management system. An integrated functional genomics platform. Plant Physiol 143:600–611PubMedPubMedCentralCrossRefGoogle Scholar
  13. Blair MW, Wu X, Bhandari D, Astudillo C (2016) Genetic dissection of ICP-detected nutrient accumulation in the whole seed of common bean (Phaseolus vulgaris L.). Front Plant Sci 7:219PubMedPubMedCentralCrossRefGoogle Scholar
  14. Blanco A, Simeone R, Gadaleta A (2006) Detection of QTLs for grain protein content in durum wheat. Theor Appl Genet 112:1195–1204PubMedCrossRefGoogle Scholar
  15. Bohra A (2013) Emerging paradigms in genomics-based crop improvement. Sci World J 585467:17Google Scholar
  16. Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP (2015) Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genet 56:151–161PubMedCrossRefGoogle Scholar
  17. Bohra A, Jha UC, Kumar S (2016) Enriching nutrient density in staple crops using modern“-Omics” tools. In: Singh U, Praharaj CS, Singh SS, Singh NP (eds) Biofortification of food crops. Springer, New Delhi, pp 85–103CrossRefGoogle Scholar
  18. Boonyaves K, Gruissem W, Bhullar NK (2016) NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains. Plant Mol Biol 90:207–215PubMedCrossRefGoogle Scholar
  19. Boonyaves K, Wu TY, Gruissem W, Bhullar NK (2017) Enhanced grain iron levels in rice expressing an iron-regulated metal transporter, nicotianamine synthase, and ferritin gene cassette. Front Plant Sci 8:130PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58PubMedPubMedCentralCrossRefGoogle Scholar
  21. Boyles RE, Pfeiffer BK, Cooper EA, Rauh BL, Zielinski KJ, Myers MT, Brenton Z, Rooney WL, Kresovich S (2017) Genetic dissection of sorghum grain quality traits using diverse and segregating populations. Theor Appl Genet 130:697–716PubMedCrossRefGoogle Scholar
  22. Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Dolors Serret M, Araus JL (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Bio 54:312–320CrossRefGoogle Scholar
  23. Cakmak I, Ozkan H, Braun HJ, Welch RM, Romheld V (2000) Zinc and iron concentrations in seeds of wild, primitive and modern wheats. Food Nutr Bull 21:401e403CrossRefGoogle Scholar
  24. Chao H, Wang H, Wang X, Guo L, Gu J, Zhao W, Li B, Chen D, Raboanatahiry N, Li M (2017) Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus. Sci Rep 7:46295PubMedPubMedCentralCrossRefGoogle Scholar
  25. Colasuonno P, Lozito ML, Marcotuli I, Nigro D, Giancaspro A, Mangini G, De Vita P, Mastrangelo AM, Pecchioni N, Houston K, Simeone R, Gadaleta A, Blanco A (2017) The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments. BMC Genomics 18:122PubMedPubMedCentralCrossRefGoogle Scholar
  26. Crespo-Herrera LA, Velu G, Singh RP (2016) Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. Ann Appl Biol 169:27–35CrossRefGoogle Scholar
  27. Crespo-Herrera LA, Govindan V, Stangoulis J, Hao Y, Singh RP (2017) QTL mapping of grain Zn and Fe concentrations in two Hexaploid wheat RIL populations with ample transgressive segregation. Front Plant Sci 8:1800PubMedPubMedCentralCrossRefGoogle Scholar
  28. Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G et al (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975PubMedCrossRefGoogle Scholar
  29. De Valença AW, Bake A, Brouwer ID, Giller KE (2017) Agronomic biofertilization of crops to fight hidden hunger in sub-Saharan Africa. Gobal Food Security 12:8–14CrossRefGoogle Scholar
  30. van der Werf J (2013) Genomic selection in animal breeding programs. In: Gondro C, van der Werf J, Hayes BJ (eds) Genome-wide association studies and genomic prediction. Springer, New York, NY, pp 543–561CrossRefGoogle Scholar
  31. Diapari M, Sindhu A, Bett K, Deokar A, Warkentin TD, Taran B (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome 57:1–10CrossRefGoogle Scholar
  32. Dwivedi SL, Sahrawat KL, Rai KN, Blair MW, Andersson M, Pfieffer W (2012) Nutritionally enhanced staple food crops. Plant Breed Rev 34:169–262CrossRefGoogle Scholar
  33. Eiche E, Bardelli F, Nothstein AK, Charlet L, Göttlicher J, Steininger R, Dhillon KS, Sadana US (2015) Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab. Sci Total Environ 505:952–961PubMedCrossRefGoogle Scholar
  34. Garcia-Oliveira AL, Tan L, Fu Y, Sun C (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51:84–92PubMedCrossRefPubMedCentralGoogle Scholar
  35. Giuliano G (2017) Provitamin A biofortification of crop plants: a gold rush with many miners. Curr Opin Biotechnol 44:169–180PubMedCrossRefGoogle Scholar
  36. Gomez-Becerra HF, Yazici A, Ozturk L, Budak H, Peleg Z, Morgounov A, Fahima T, Saranga Y, Cakmak I (2010) Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica 171(1):39–52CrossRefGoogle Scholar
  37. Gomez-Becerra HF, Erdem H, Yazici A, Tutus B, Torun L, Ozturk L, Cakmak I (2011) Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J Cereal Sci 52:342–349CrossRefGoogle Scholar
  38. Gorafi YSA, Ishii T, Kim JS, Elbashir AAE, Tsujimoto H (2016) Genetic variation and association mapping of grain iron and zinc contents in synthetic hexaploid wheat germplasm. Plant Genet Resour. CrossRefGoogle Scholar
  39. Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142CrossRefGoogle Scholar
  40. Gregorio GB, Senadhira D, Htut H, Graham RD (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386CrossRefGoogle Scholar
  41. Gu R, Chen F, Liu B, Wang X, Liu J, Li P, Pan Q, Pace J, Soomro AA, Lübberstedt T, Mi G, Yuan L (2015) Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.). Theor Appl Genet 128:1777–1789PubMedCrossRefGoogle Scholar
  42. Guerrero B, Llugany M, Palacios O, Valiente M (2014) Dual effects of different selenium species on wheat. Plant Physiol Biochem 83:300–307PubMedCrossRefGoogle Scholar
  43. Gyawali S, Otte ML, Chao S, Jilal A, Jacob DL, Amezrou R, Verma RPS (2017) Genome wide association studies (GWAS) of element contents in grain with a special focus on zinc and iron in a world collection of barley (Hordeum vulgare L.). J Cereal Sci 77:266–274CrossRefGoogle Scholar
  44. Harjes C, Rocheford T, Bai L, Brutnell T, Kandianis C, Sowinski S, Stapleton A, Vallabhaneni R, Williams M, Wurtzel E et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421PubMedCrossRefPubMedCentralGoogle Scholar
  46. Huang XY, Salt DE (2016) Plant ionomics: from elemental profiling to environmental adaptation. Mol Plant 9:787–789PubMedCrossRefPubMedCentralGoogle Scholar
  47. Huang Y, Sun C, Min J, Chen Y, Tong C, Bao J (2015) Association mapping of quantitative trait loci for mineral element contents in whole grain rice (Oryza sativa L.). J Agric Food Chem 63:10885–10892PubMedCrossRefGoogle Scholar
  48. Ishikawa R, Iwata M, Taniko K, Monden G, Miyazaki N, Orn C et al (2017) Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice. PLoS One 12(10):e0187224PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jadhav AA, Rayate SJ, Mhase LB, Thudi M, Chitikineni A, Harer PN, Jadhav AS, Varshney RK, Kulwal PL (2015) Marker-trait association study for protein content in chickpea (Cicer arietinum L.). J Genet 94:279–286PubMedCrossRefGoogle Scholar
  50. Jambunathan R (1980) Improvement of the nutritional quality of sorghum and pearl millet. Food Nutr Bull 2:11–16CrossRefGoogle Scholar
  51. Jin T, Chen J, Zhu L, Zhao Y, Guo J, Huang Y (2015) Comparative mapping combined with homology based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize. BMC Genet 16:17PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jittham O, Fu X, Xu J, Chander S, Li J, Yang X (2017) Genetic dissection of carotenoids in maize kernels using high-density single nucleotide polymorphism markers in a recombinant inbred line population. Crop J 5:63–72CrossRefGoogle Scholar
  53. Johnson AAT et al (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 6:e24476PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kandianis CB, Stevens R, Liu WP, Palacios N, Montgomery K, Pixley K, White WS, Rocheford T (2013) Genetic architecture controlling variation in grain carotenoid composition and concentrations in two maize populations. Theor Appl Genet 126:2879–2895PubMedPubMedCentralCrossRefGoogle Scholar
  55. Khazaei H, Podder R, Caron CT, Kundu SS, Diapari M, Vandenberg A, Bett KE (2017) Marker–trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant Genome 10(2):28724070CrossRefGoogle Scholar
  56. Khokhar JS, Sareen S, Tyagi BS, Singh G, Wilson L, King IP et al (2018) Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat. PLoS One 13:e0192026PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kondou Y, Manickavelu A, Komatsu K, Arifi M, Kawashima M, Ishii T, Hattori T, Iwata H, Tsujimoto H, Ban T, Matsui M (2016) Analysis of grain elements and identification of best genotypes for Fe and P in Afghan wheat landraces. Breed Sci 66:676–682PubMedPubMedCentralCrossRefGoogle Scholar
  58. Krishnappa G, Singh AM, Chaudhary S, Ahlawat AK, Singh SK, Shukla RB et al (2017) Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.). PLoS One 12:e0174972PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, Senapathy S, Mahendrakar MD, Yadav RS, Srivastava RK (2016) Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 7:1636PubMedPubMedCentralGoogle Scholar
  60. Liu H, Wang ZH, Li F, Li K, Yang N, Yang Y, Huang D, Liang D, Zhao H, Mao H, Liu J, Qiu W (2014) Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crop Res 156:151–160CrossRefGoogle Scholar
  61. Liu C, Chen G, Li Y, Peng Y, Zhang A, Hong K et al (2017) Characterization of a major QTL for manganese accumulation in rice grain. Sci Rep 7(1):17704PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lorenz AJ, Chao S, Asoro FG et al (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123CrossRefGoogle Scholar
  63. Lung’aho MG, Mwaniki AM, Szalma SJ, Hart JJ, Rutzke MA, Kochian LV, Glahn RP, Hoekenga OA (2011) Genetic and physiological analysis of iron biofortification in maize kernels. PLoS One 6:e20429PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mahender A, Anandan A, Pradhan SK, Pandit E (2016) Rice grain nutritional traits and their enhancement using relevant genes and QTLs through advanced approaches. Springerplus 5:2086PubMedPubMedCentralCrossRefGoogle Scholar
  65. Mallikarjuna MG, Thirunavukkarasu N, Hossain F, Bhat JS, Jha SK, Rathore A, Agrawal PK, Pattanayak A, Reddy SS, Gularia SK, Singh AM, Manjaiah KM, Gupta HS (2015) Stability performance of inductively coupled plasma mass spectrometry-phenotyped kernel minerals concentration and grain yield in maize in different agro-climatic zones. PLoS One 10:e0139067PubMedPubMedCentralCrossRefGoogle Scholar
  66. Manickavelu A, Hattori T, Yamaoka S, Yoshimura K, Kondou Y, Onogi A et al (2017) Genetic nature of elemental contents in wheat grains and its genomic prediction: toward the effective use of wheat landraces from Afghanistan. PLoS One 12:e0169416PubMedPubMedCentralCrossRefGoogle Scholar
  67. Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543PubMedPubMedCentralCrossRefGoogle Scholar
  68. Masuda H, Shimochi E, Hamada T, Senoura T, Kobayashi T, Aung MS et al (2017) A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. PLoS One 12(3):e0173441PubMedPubMedCentralCrossRefGoogle Scholar
  69. Meuwissen THE, Hayes BJ, Goddard ME (2016) Genomic selection: a paradigm shift in animal breeding. Anim Front 6:6–14CrossRefGoogle Scholar
  70. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  71. Mishra A, Bohra A (2018) Non-coding RNAs and plant male sterility: current knowledge and future prospects. Plant Cell Rep 37:177–191PubMedCrossRefGoogle Scholar
  72. Mohanty A, Marndi BC, Sharma S, Das A (2011) Biochemical characterization of two high protein rice cultivars from Assam rice collections. Oryza 48:171–174Google Scholar
  73. Monsen ER (2000) Dietary reference intakes for the antioxidant nutrients: vitamin C, vitamin E, selenium, and carotenoids. J Am Diet Assoc 100:637–640PubMedCrossRefGoogle Scholar
  74. Moreno-Moyano LT, Bonneau JP, Sánchez-Palacios JT, Tohme J, Johnson AAT (2016) Association of increased grain iron and zinc concentrations with agro-morphological traits of biofortified rice. Front Plant Sci 7:1463PubMedPubMedCentralCrossRefGoogle Scholar
  75. Morgounov A, Gómez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203CrossRefGoogle Scholar
  76. Muzhingi T, Palacios-Rojas N, Miranda A, Cabrera ML, Yeum KJ, Tang G (2017) Genetic variation of carotenoids, vitamin E and phenolic compounds in Provitamin A biofortified maize. J Sci Food Agric 97:793–801PubMedCrossRefGoogle Scholar
  77. Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1303–1316PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nawaz Z, Kakar KU, Li XB, Li S, Zhang B, Shou HX, Shu QY (2015) Genome-wide association mapping of quantitative trait loci (QTLs) for contents of eight elements in brown rice (Oryza sativa L.). J Agric Food Chem 63:8008–8016PubMedCrossRefGoogle Scholar
  79. Neelamraju S, Mallikarjuna Swamy BP, Kaladhar K, Anuradha K, Venkateshwar Rao Y, Batchu AK, Agarwal S, Babu AP, Sudhakar T, Sreenu K, Longvah T, Surekha K, Rao KV, Ashoka Reddy G, Roja TV, Kiranmayi SL, Radhika K, Manorama K, Cheralu C, Viraktamath BC (2012) Increasing iron and zinc in rice grains using deep water rices and wild species – identifying genomic segments and candidate genes. Q Assur Safety Crops Foods 4:138CrossRefGoogle Scholar
  80. Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H, Nishizawa NK (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol 75:593–605PubMedCrossRefGoogle Scholar
  81. Ortiz-Monasterio JI, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Pena RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307CrossRefGoogle Scholar
  82. Owens BF, Lipka AE, Magallanes-Lundback M, Tiede T, Diepenbrock CH, Kandianis CB, Kim E, Cepela J, Mateos-Hernandez M, Buell CR, Buckler ES, DellaPenna D, Gore MA, Rocheford T (2014) A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pandey A, Khan MK, Hakki EE, Thomas G, Hamurcu M, Gezgin S, Gizlenci O, Akkaya MS (2016) Assessment of genetic variability for grain nutrients from diverse regions: potential for wheat improvement. Springerplus 5:1912PubMedPubMedCentralCrossRefGoogle Scholar
  84. Paul S, Ali N, Gayen D, Datta SK, Datta K (2012) Molecular breeding of Osfer2 gene to increase iron nutrition in rice. GM Crops Food 3:310–316PubMedCrossRefPubMedCentralGoogle Scholar
  85. Paul S, Gayen D, Datta SK, Dutta K (2016) Analysis of high iron rice lines reveals new miRNAs that target iron transporters in roots. J Expt Bot 67:5811–5824CrossRefGoogle Scholar
  86. Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–67CrossRefGoogle Scholar
  87. Phuke RM, Anuradha K, Radhika K, Jabeen F, Anuradha G, Ramesh T, Hariprasanna K, Mehtre SP, Deshpande SP, Anil G, Das RR, Rathore A, Hash T, Reddy BVS, Kumar AA (2017) Genetic variability, genotype × environment interaction, correlation, and GGE biplot analysis for grain iron and zinc concentration and other agronomic traits in RIL population of sorghum (Sorghum bicolor L. Moench). Front Plant Sci 8:712PubMedPubMedCentralCrossRefGoogle Scholar
  88. Pinson SRM, Tarpley L, Yan W, Yeater K, Lahner B, Yakubova B et al (2015) Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci 55:294–311CrossRefGoogle Scholar
  89. Poblaciones MJ, Rodrigo S, Santamaria O, Chen Y, McGrath SP (2014) Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: from grain to cooked pasta. Food Chem 146:378–384PubMedCrossRefGoogle Scholar
  90. Pu ZE, Yu M, He QY, Chen GY, Wang JR, Liu YX et al (2014) Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J Integr Agric 13:2322–2329CrossRefGoogle Scholar
  91. Qin X, Zhang W, Dubcovsky J, Tian L (2012) Cloning and comparative analysis of carotenoid β-hydroxylase genes provides new insights into carotenoid metabolism in tetraploid (Triticum turgidum ssp. durum) and hexaploid (Triticum aestivum) wheat grains. Plant Mol Biol 80:631–646PubMedPubMedCentralCrossRefGoogle Scholar
  92. Qin X, Fischer K, Yu S, Dubcovsky J, Tian L (2016) Distinct expression and function of carotenoid metabolic genes and homoeologs in developing wheat grains. BMC Plant Biol 16:155PubMedPubMedCentralCrossRefGoogle Scholar
  93. Raboy V, Dickinson DB, Below FE (1984) Variation in seed total phosphorus, phytic acid, zinc, calcium, magnesium, and protein among lines of Glycine max and G. soja. Crop Sci 24:431–434CrossRefGoogle Scholar
  94. Rahman WMM, Zaman EMS, Thavarajah P, Thavarajah D, Siddique KHM (2013) Selenium biofortification in lentil (Lens culinaris Medikus subsp. culinaris): farmers’ field survey and genotype × environment effect. Food Res Int 54:1596–1604CrossRefGoogle Scholar
  95. Renuka N, Mathure SV, Zanan RL, Thengane RJ, Nadaf AB (2016) Determination of some minerals and β-carotene contents in aromatic indica rice (Oryza sativa L.) germplasm. Food Chem 191:2–6PubMedCrossRefGoogle Scholar
  96. Rezaei MK, Deokar A, Tar’an B (2016) Identification and expression analysis of candidate genes involved in carotenoid biosynthesis in chickpea seeds. Front Plant Sci 7:1867PubMedPubMedCentralCrossRefGoogle Scholar
  97. Rhodes DH, Hoffmann L Jr, Rooney WL, Herald TJ, Bean S, Boyles R, Brenton ZW, Kresovich S (2017) Genetic architecture of kernel composition in global sorghum germplasm. BMC Genomics 18:15PubMedPubMedCentralCrossRefGoogle Scholar
  98. Roy SC, Sharma BD (2014) Assessment of genetic diversity in rice [Oryza sativa L.] germplasm based on agro-morphology traits and zinc-iron content for crop improvement. Physiol Mol Biol Plants 20:209–224PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ruel MT, Alderman H, The Maternal and Child Nutrition Study Group (2013) Nutrition-sensitive interventions and programmes: how can they help to accelerate progress in improving maternal and child nutrition? Lancet 382:536–551PubMedCrossRefGoogle Scholar
  100. Schroeder DG, Brown KH (1994) World health organ nutritional status as a predictor of child survival: summarizing the association and quantifying its global impact. Bull World Health Organ 72:569–579PubMedPubMedCentralGoogle Scholar
  101. Sing SP, Gruissem W, Bhullar NK (2017) Single genetic locus improvement of iron, zinc and β-carotene content in rice grains. Sci Rep 7:6883CrossRefGoogle Scholar
  102. Singh A, Sharma V, Dikshit HK, Aski M, Kumar H, Thirunavukkarasu N, Patil BS, Kumar S, Sarker A (2017a) Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris). PLoS One 12:e0188296PubMedPubMedCentralCrossRefGoogle Scholar
  103. Singh A, Sharma V, Dikshit HK, Aski M, Kumar H, Thirunavukkarasu N, Patil BS, Kumar S, Sarker A (2017b) Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil(Lens culinaris subsp. culinaris). PLoS One 12:e0188296PubMedPubMedCentralCrossRefGoogle Scholar
  104. Srinivasa J, Arun B, Mishra VK, Singh GP, Velu G, Babu R et al (2014) Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theor Appl Genet 127:1643–1651PubMedCrossRefGoogle Scholar
  105. Suwarno WB, Pixley KV, Palacios-Rojas N, Kaeppler SM, Babu R (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128:851–864PubMedPubMedCentralCrossRefGoogle Scholar
  106. Swamy BPM, Rahman MA, Inabangan-Asilo MA, Amparado A, Manito C, Chadha-Mohanty P, Reinke R, Slamet-Loedin IH (2016) Advances in breeding for high grain zinc in rice. Rice (NY) 9:49CrossRefGoogle Scholar
  107. Terasawa Y, Ito M, Tabiki T, Nagasawa K, Hatta K, Nishio Z (2016) Mapping of a major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.). Breed Sci 66:471–480PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tiwari C, Wallwork H, Balasubramaniam A, Mishra VK, Govindan V, Stangoulis J, Kumar U, Joshi AK (2016) Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica 207:563–570CrossRefGoogle Scholar
  109. Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C et al (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:19792PubMedPubMedCentralCrossRefGoogle Scholar
  110. Upadhyaya HD, Bajaj D, Das S, Kumar V, Gowda CL, Sharma S, Tyagi AK, Parida SK (2016a) Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci Rep 6:24050PubMedPubMedCentralCrossRefGoogle Scholar
  111. Upadhyaya HD, Bajaj D, Narnoliya L, Das S, Kumar V, Gowda CL, Sharma S, Tyagi AK, Parida SK (2016b) Genome-wide scans for delineation of candidate genes regulating seed-protein content in chickpea. Front Plant Sci 7:302PubMedPubMedCentralCrossRefGoogle Scholar
  112. Velu G, Ortiz-Monasterio I, Singh R, Payne T (2011) Variation for grain micronutrients concentration in wheat core-collection accessions of diverse origin. Asian J Crop Sci 3:43–48CrossRefGoogle Scholar
  113. Velu G, Tutus Y, Becerra HFG, Hao Y, Demir L, Kara L, Crespo-Herrera L, Orhan S, Yazici A, Singh R, Cakmak I (2016a) QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations. Plant Soil 411:81–99CrossRefGoogle Scholar
  114. Velu G, Crossa J, Singh RP, Hao Y, Dreisigacker S, Perez-Rodriguez P, Joshi AK, Chatrath R, Gupta V, Balasubramaniam A, Tiwari C, Mishra VK, Sohu VS, Mavi GS (2016b) Genomic prediction for grain zinc and iron concentrations in spring wheat. Theor Appl Genet 129:1595–1605PubMedCrossRefGoogle Scholar
  115. Velu G, Rai KN, Muralidharan V, Kulkarni VN, Longvah T, Raveendran TS (2007) Prospects of breeding biofortified pearl millet with high grain iron and zinc content. Plant Breed 126:182–185CrossRefGoogle Scholar
  116. Wang P, Wang H, Liu Q, Tian X, Shi Y, Zhang X (2017) QTL mapping of selenium content using a RIL population in wheat. PLoS One 12:e0184351PubMedPubMedCentralCrossRefGoogle Scholar
  117. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84PubMedCrossRefGoogle Scholar
  118. Wirth J et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:631–644PubMedCrossRefGoogle Scholar
  119. Yamunarani R, Govind G, Ramegowda V, Vokkaliga H, Thammegowda HV, Guligowda SA (2016) Genetic diversity for grain Zn concentration in finger millet genotypes: potential for improving human Zn nutrition. Crop J 4:229–234CrossRefGoogle Scholar
  120. Yan J, Kandianis C, Harjes C, Bai L, Kim E, Yang X, Skinner D, Fu Z, Mitchell S, Li Q et al (2010) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat Genet 42:322–327PubMedCrossRefGoogle Scholar
  121. Zhai SN, Xia XC, He ZH (2016) Carotenoids in staple cereals: metabolism, regulation, and genetic manipulation. Front Plant Sci 7:1197PubMedPubMedCentralGoogle Scholar
  122. Zhang Y, Xu YH, Yi HY, Gong JM (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410PubMedCrossRefGoogle Scholar
  123. Zhang M, Pinson SRM, Tarpley L, Huang X, Lahner B, Yakubova E et al (2014) Mapping and validation of quantitative trait loci associated with concentration of 16 elements in unmilled rice grain. Theor Appl Genet 127:137–165PubMedCrossRefGoogle Scholar
  124. Zhang H, Liu J, Jin T, Huang Y, Chen J, Zhu L, Zhao Y, Guo J (2017a) Identification of quantitative trait locus and prediction of candidate genes for grain mineral concentration in maize across multiple environments. Euphytica 213:90CrossRefGoogle Scholar
  125. Zhang D, Zhang H, Chu S, Li H, Chi Y, Triebwasser-Freese D, Lv H, Yu D (2017) Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress. Plant Mol Biol 93:137–150PubMedCrossRefGoogle Scholar
  126. Zhao FJ, Su YH, Dunham SJ, Rakszegi M, Bedo Z, McGrath SP, Shewry PR (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci 49:290–295CrossRefGoogle Scholar
  127. Zhou JF, Huang YQ, Liu ZZ, Chen JT, Zhu LY, Song ZQ, Zhao YF (2010) Genetic analysis and QTL mapping of zinc, iron, copper and manganese contents in maize seed. J Plant Genet Resour 11:593–595Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abhishek Bohra
    • 1
  • Uday Chand Jha
    • 1
  • Rintu Jha
    • 1
  • S. J. Satheesh Naik
    • 1
  • Alok Kumar Maurya
    • 1
  • Prakash G. Patil
    • 2
  1. 1.ICAR-Indian Institute of Pulses Research (IIPR)KanpurIndia
  2. 2.ICAR-National Research Centre on PomegranateSolapurIndia

Personalised recommendations