Effects on EEG of Drugs and Toxic Substances

  • Marianna Brienza
  • Patrizia Pulitano
  • Oriano MecarelliEmail author


The use of different drugs in clinical practice has enhanced the importance of pharmaco-EEG (P-EEG) studies in recent years.

The first part of this chapter will discuss the general and methodological aspects of P-EEG.

In the second part, EEG characteristics of individual drugs (antiepileptic and non-antiepileptic drugs) will be described.


Pharmaco-EEG Antiepileptic drugs Anxiolytics Antipsychotics Antidepressants Anesthetics Antibiotics Recreational drugs 


  1. 1.
    Jobert M, Wilson FJ. Advanced analysis of Pharmaco-EEG data in humans. Neuropsychobiology. 2015;72:165–77.PubMedCrossRefGoogle Scholar
  2. 2.
    Babiloni C, Vecchio F, Lizio R, et al. Resting state cortical rhythms in mild cognitive impairment and Alzheimer’s disease: electroencephalographic evidence. J Alzheimers Dis. 2011;26(Suppl 3):201–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Jobert M, Wilson FJ, Ruigt GSF, et al. Guidelines for the recording and evaluation of Pharmaco-EEG data in man: the international Pharmaco-EEG society (IPEG). Neuropsychobiology. 2012;66:201–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Jobert M, Schulz H, Jahnig P. On the choice of recording duration in pharmaco-EEG studies. Neuropsychobiology. 1995;32:106–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Olbrich S, Mulert C, Karch S, et al. EEG vigilance and BOLD effect during simultaneous EEG/fMRI measurement. Neuroimage. 2009;45:319–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Salinsky MC, Oken BS, Morehead L. Intraindividual analysis of antiepileptic drug effects on EEG background rhythms. Electroencephalogr Clin Neurophysiol. 1994;90:186–93.PubMedCrossRefGoogle Scholar
  7. 7.
    Salinsky MC, Oken BS, Storzbach D, Dodrill CB. Assessment of CNS effects of antiepileptic drugs by using quantitative EEG measures. Epilepsia. 2003;44:1042–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Marciani MG, Gigli GL, Stefanini F, et al. Effect of carbamazepine on EEG background activity and on interictal epileptiform abnormalities in focal epilepsy. Int J Neurosci. 1993;70:107–16.PubMedCrossRefGoogle Scholar
  9. 9.
    Wu X, Xiao CH. Quantitative pharmaco-EEG of carbamazepine in volunteers and epileptics. Clin Electroencephalogr. 1996;27:40–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Cherian KA, Legatt AD. Burst suppression pattern on electroencephalogram secondary to Valproic acid-induced Hyperammonemic encephalopathy. Pediatr Neurol. 2017;73:88–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Arzy S, Allali G, Brunet D. Antiepileptic drugs modify power of high EEG frequencies and their neural generators. Eur J Neurol. 2010;17:1308–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Mecarelli O, Vicenzini E, Pulitano P, et al. Clinical, cognitive, and neurophysiologic correlates of short-term treatment with carbamazepine, oxcarbazepine, and levetiracetam in healthy volunteers. Ann Pharmacother. 2004;38:1816–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Nicholson A, Appleton RE, Chadwick DW, Smith DF. The relationship between treatment with valproate, lamotrigine, and topiramate and the prognosis of then idiopathic generalized epilepsies. J Neurol Neurosurg Psychiatry. 2004;75:75–9.Google Scholar
  14. 14.
    Clemens B, Ménes A, Piros P, et al. Quantitative EEG effects of carbamazepine, oxcarbazepine, valproate, lamotrigine, and possible clinical relevance of the findings. Epilepsy Res. 2006;70:190–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Clemens B, Piros P, Bessenyei M, Hollody K. Lamotrigine decreases EEG synchronization in a use-dependent manner in patients with idiopathic generalized epilepsy. Clin Neurophysiol. 2007;118:910–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Lyseng-Williamson KA. Levetiracetam: a review of its use in epilepsy. Drugs. 2011;71:489–514.PubMedCrossRefGoogle Scholar
  17. 17.
    Bouchier B, Demarquay G, Guérin C, André-Obadia N, Gobert F. Marked EEG worsening following Levetiracetam overdose: how a pharmacological issue can confound coma prognosis. Clin Neurol Neurosurg. 2017;152:1–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Schomer DL. In: Lopes da Silva FH, editor. Niedermeyer’s electroencephalography: basic principles, clinical applications and related fields. New York: Oxford University Press; 2018.Google Scholar
  19. 19.
    Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalized and unclassifiable epilepsy: an unblinded randomized controlled trial. Lancet. 2007;369:1016–26.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Specchio N, Boero G, Michelucci R, et al. Effects of levetiracetam on EEG abnormalities in juvenile myoclonic epilepsy. Epilepsia. 2008;49:663–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Pro S, Vicenzini E, Pulitano P, et al. Effects of levetiracetam on generalized discharges monitored with ambulatory EEG in epileptic patients. Seizure. 2009;18:133–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Biraben A, Allain H, Scarabin J, Schück S, Edan G. Exacerbation of juvenile myoclonic epilepsy with lamotrigine. Neurology. 2000;55:1758.PubMedCrossRefGoogle Scholar
  23. 23.
    Morris G, Hammer A, Kustra R, Messenheimer J. Lamotrigine for patients with juvenile myoclonic epilepsy following prior treatment with valproate: results of an open-label study. Epilepsy Behav. 2004;5:509–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Machado RA, García VF, Astencio AG, Cuartas VB. Efficacy and tolerability of lamotrigine in juvenile myoclonic epilepsy in adults: a prospective, unblinded randomized controlled trial. Seizure. 2013;22:846–55.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu J, Wang LN, Wang YP. Topiramate monotherapy for juvenile myoclonic epilepsy. Cochrane Database Syst Rev. 2017;4:CD010008.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Mecarelli O, Piacenti A, Pulitano P, et al. Clinical and electroencephalographic effects of topiramate in patients with epilepsy and healthy volunteers. Clin Neuropharmacol. 2001;24:284–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Misra UK, Dubey D, Kalita J. Comparison of lacosamide versus sodium valproate in status epilepticus: a pilot study. Epilepsy Behav. 2017;76:110–3.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhu LN, Chen D, Xu D, Tan G, Wang HJ, Liu L. Newer antiepileptic drugs compared to levetiracetam as adjunctive treatments for uncontrolled focal epilepsy: an indirect comparison. Seizure. 2017;51:121–32.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    d’Orsi G, Pascarella MG, Martino T, et al. Intravenous lacosamide in seizure emergencies: observations from a hospitalized in-patient adult population. Seizure. 2016;42:20–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Behr C, Lévesque M, Ragsdale D, Avoli M. Lacosamide modulates interictal spiking and high-frequency oscillations in a model of mesial temporal lobe epilepsy. Epilepsy Res. 2015;115:8–16.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Manconi M, Ferri R, Miano S, et al. Sleep architecture in insomniacs with severe benzodiazepine abuse. Clin Neurophysiol. 2017;128:875–81.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Jernajczyk W, Gosek P, Latka M, Kozlowska K, Święcicki Ł, West BJ. Alpha wavelet power as a biomarker of antidepressant treatment response in bipolar depression. Adv Exp Med Biol. 2017;968:79–94.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Bruder GE, Sedoruk JP, Stewart JW, McGrath PJ, Quitkin FM, Tenke CE. Electroencephalographic alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: pre-and post-treatment findings. Biol Psychiatry. 2008;63:1171–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Arns M, Bruder G, Hegerl U, et al. EEG alpha asymmetry as a gender-specific predictor of outcome to acute treatment with different antidepressant medications in the randomized iSPOT-D study. Clin Neurophysiol. 2016;127:509–19.PubMedCrossRefGoogle Scholar
  35. 35.
    Baskaran A, Milev R, McIntyre RS. The neurobiology of the EEG biomarker as a predictor of treatment response in depression. Neuropharmacology. 2012;63:507–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Macaluso M, Zackula R, D’Empaire I, Baker B, Liow K, Preskorn SH. Twenty percent of a representative sample of patients taking bupropion have abnormal, asymptomatic electroencephalographic findings. J Clin Psychopharmacol. 2010;30:312–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ott GE, Rao U, Lin KM, Gertsik L, Poland RE. Effect of treatment with bupropion on EEG sleep: relationship to antidepressant response. Int J Neuropsychopharmacol. 2004;7:275–81.PubMedCrossRefGoogle Scholar
  38. 38.
    Leiser SC, Pehrson AL, Robichaud PJ, Sanchez C. Multimodal antidepressant vortioxetine increases frontal cortical oscillations unlike escitalopram and duloxetine–a quantitative EEG study in rats. Br J Pharmacol. 2014;171:4255–72.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Pehrson AL, Leiser SC, Gulinello M. Treatment of cognitive dysfunction in major depressive disorder—a review of the preclinical evidence for efficacy of selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors and the multimodal-acting antidepressant vortioxetine. Eur J Pharmacol. 2015;753:19–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Dale E, Zhang H, Leiser SC, et al. Vortioxetine (Lu AA21004) disinhibits pyramidal cell output and enhances theta rhythms and long-term plasticity in the hippocampus. Eur Neuropsychopharmacol. 2013;23:S394.CrossRefGoogle Scholar
  41. 41.
    Riga MS, Celada P, Sanchez C, Artigas F. Role of 5-HT3 receptors in the mechanism of action of the investigational antidepressant vortioxetine. Eur Neuropsychopharmacol. 2013;23:S393–4.CrossRefGoogle Scholar
  42. 42.
    Hunter AM, Leuchter AF, Cook IA, et al. Brain functional changes and duloxetine treatment response in fibromyalgia: a pilot study. Pain Med. 2009;10:730–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Bruder GE, Sedoruk JP, Steward JW. EEG alpha measures predict therapeutic response to an SSRI antidepressant: pre and post treatment findings. Biol Psychiatry. 2008;63:1171–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Bloechliger M, Ceschi A, Rüegg S, et al. Risk of seizures associated with antidepressant use in patients with depressive disorder: follow-up study with a nested case–control analysis using the clinical practice research datalink. Drug Saf. 2016;39:307.PubMedCrossRefGoogle Scholar
  45. 45.
    Wu C, Liu HY, Tsai HJ, Liu SK. Seizure risk associated with antidepressant treatment among patients with depressive disorders: a population-based case-crossover study. J Clin Psychiatry. 2017;78:e1226–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Liem-Moolenaar M, Gray FA, de Visser SJ, et al. Psychomotor and cognitive effects of a single oral dose of talnetant (SB223412) in healthy volunteers compared with placebo or haloperidol. J Psychopharmacol. 2010;24:73–82.PubMedCrossRefGoogle Scholar
  47. 47.
    Yoshimura M, Koenig T, Irisawa S, et al. A pharmaco-EEG study on antipsychotic drugs in healthy volunteers. Psychopharmacology (Berl). 2007;191:995–1004.CrossRefGoogle Scholar
  48. 48.
    Knott V, Labelle A, Jones B, Mahoney C. Quantitative EEG in schizophrenia and in response to acute and chronic clozapine treatment. Schizophr Res. 2001;50:41–53.PubMedCrossRefGoogle Scholar
  49. 49.
    Centorrino F, Price BH, Tuttle M, et al. EEG abnormalities during treatment with typical and atypical antipsychotics. Am J Psychiatry. 2002;159:109–15.PubMedCrossRefGoogle Scholar
  50. 50.
    Henninger GR. Lithium carbonate and brain function. Cerebral-evoked potentials, EEG and symptom changes during lithium carbonate treatment. Arch Gen Psychiatry. 1978;35:228–33.CrossRefGoogle Scholar
  51. 51.
    Thau K, Rappelsberger P, Lovrek A, Petsche H, Simhandl C, Topitz A. Effect of lithium on the EEG of healthy males and females. A probability mapping study. Neuropsychobiology. 1989;20:158–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Aiyer R, Novakovic V, Barkin RL. A systematic review on the impact of psychotropic drugs on electroencephalogram waveforms in psychiatry. Postgrad Med. 2016;128:656–64.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Avidan MS, Zhang L, Burnside BA, et al. Anesthesia awareness and the bispectral index. N Engl J Med. 2008;358:1097–108.PubMedCrossRefGoogle Scholar
  54. 54.
    Kelley SD. Monitoring consciousness: using the bispectral index. 2nd ed. Boulder: Covidien; 2010. p. 6.Google Scholar
  55. 55.
    Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists part I: background and basic signatures. Anesthesiology. 2015;123:937–60.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Besch G, Liu N, Samain E, et al. Occurrence of and risk factors for electroencephalogram burst suppression during propofol-remifentanil anaesthesia. Br J Anaesth. 2011;107:749–56.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Purdon PL, Pierce ET, Mukamel EA, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A. 2013;110:E1142–51.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Akeju O, Kim SE, Vazquez R, et al. Spatiotemporal dynamics of dexmedetomidine-induced electroencephalogram oscillations. PLoS One. 2016;11:e0163431.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Akeju O, Pavone KJ, Westover MB, et al. A comparison of propofol- and dexmedetomidine-induced electroencephalogram dynamics using spectral and coherence analysis. Anesthesiology. 2014;121:978–89.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34:605–13.PubMedGoogle Scholar
  61. 61.
    Pertwee RG, Howlett AC, Abood ME, et al. International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB and CB. Pharmacol Rev. 2010;62:588–631.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience. 1997;77:299–318.PubMedCrossRefGoogle Scholar
  63. 63.
    Freund TF, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev. 2003;83:1017–66.PubMedCrossRefGoogle Scholar
  64. 64.
    Eggan SM, Melchitzky DS, Sesack SR, Fish KN, Lewis DA. Relationship of cannabinoid CB1 receptor and cholecystokinin immunoreactivity in monkey dorsolateral prefrontal cortex. Neuroscience. 2010;169:1651–61.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Farkas I, Kallo I, Deli L, et al. Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons. Endocrinology. 2010;151:5818–29.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Katona I, Sperlagh B, Magloczky Z, et al. GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience. 2000;100:797–804.PubMedCrossRefGoogle Scholar
  67. 67.
    Ceballos NA, Bauer LO, Houston RJ. Recent EEG and ERP findings in substance abusers. Clin EEG Neurosci. 2009;40:122–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Sutter R, Ruegg S, Sutter ST. Seizures as adverse events of antibiotic drugs: a systematic review. Neurology. 2015;85:1332–41.PubMedCrossRefGoogle Scholar
  69. 69.
    Boston Collaborative Drug Surveillance Program. Drug induced convulsions: report from the Boston Collaborative Drug Surveillance Program. Lancet. 1972;2:677–9.Google Scholar
  70. 70.
    Van Duijn H, Schwartzkroin PA, Prince DA. Action of penicillin on inhibitory processes in the cat’s cortex. Brain Res. 1973;53:470–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Wong RK, Prince DA. Dendritic mechanisms underlying penicillin-induced epileptiform activity. Science. 1979;204:1228–31.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Raposo J, Teotónio R, Bento C, Sales F. Amoxicillin, a potential epileptogenic drug. Epileptic Disord. 2016;18:454–7.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Fernández-Torre JL, Santos-Sánchez C, Pelayo AL. De novo generalised non-convulsive status epilepticus triggered by piperacillin/tazobactam. Seizure. 2010;19:529–30.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Pro S, Randi F, Pulitano P, Vicenzini E, Mecarelli O. Reversible encephalopathy induced by cefoperazone: a case report monitored with EEG. Neurol Sci. 2011;32:465–7.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    De Silva DA, Pan AB, Lim SH. Cefepime-induced encephalopathy with triphasic waves in three Asian patients. Ann Acad Med Singapore. 2007;36:450–1.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Martínez-Rodríguez JE, Barriga FJ, Santamaria J, et al. Nonconvulsive status epilepticus associated with cephalosporins in patients with renal failure. Am J Med. 2001;111:115–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Sugimoto M, Uchida I, Mashimo T, et al. Evidence for the involvement of GABA(A) receptor blockade in convulsions induced by cephalosporins. Neuropharmacology. 2003;45:304–14.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Miller AD, Ball AM, Bookstaver PB, Dornblaser EK, Bennett CL. Epileptogenic potential of carbapenem agents: mechanism of action, seizure rates, and clinical considerations. Pharmacotherapy. 2011;31:408–23.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Fernández-Torre JL, Velasco M, Gutiérrez R, Fernández-Sampedro M. Encephalopathy secondary to imipenem therapy. Clin EEG Neurosci. 2004;35:100–3.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Green MA, Halliwell RF. Selective antagonism of the GABA(A) receptor by ciprofloxacin and biphenylacetic acid. Br J Pharmacol. 1997;122:584–90.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mazzei D, Accardo J, Ferrari A, Primavera A. Levofloxacin neurotoxicity and non-convulsive status epilepticus (NCSE): a case report. Clin Neurol Neurosurg. 2012;114:1371–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marianna Brienza
    • 1
  • Patrizia Pulitano
    • 2
  • Oriano Mecarelli
    • 1
    Email author
  1. 1.Department of Human NeurosciencesSapienza University of RomeRomeItaly
  2. 2.Azienda Ospedaliero-Universitaria Policlinico Umberto IRomeItaly

Personalised recommendations