Early-Onset Epileptic Encephalopathies

  • Marina Trivisano
  • Nicola SpecchioEmail author


Early myoclonic epilepsy (EME) and Ohtahara syndrome (OS) or early infantile epileptic encephalopathy (EIEE) are the earliest epileptic encephalopathy syndromes. These two entities share many features, including age at presentation, a similar electroencephalographic pattern, intractable seizures, and poor prognosis. EME and EIEE are traditionally distinguished according to different type of seizures, differences in the pattern of suppression-burst, and aetiologies. In EIEE onset is within the first 3 months of age and often within the first 2 weeks. Infants acutely develop tonic spasms that can be either generalized or lateralized, can occur both isolated or in clusters, and are independent from the sleep cycle. The most specific EEG feature is the suppression-burst (SB). This pattern is characterized by high-voltage bursts alternating with almost flat suppression phases at an approximately regular rate. SB pattern differs definitely from the periodic type of hypsarrhythmia where it becomes remarkable in sleep. Early myoclonic encephalopathy (EME) can be associated with structural, metabolic, and genetic abnormalities: methylmalonic acidemia, sulphite oxidase deficiency, Menkes disease, and Zellweger syndrome, and CDG disorders.

Other early-onset epileptic encephalopathies due to specific genetic aetiology include CDKL5-related epileptic encephalopathy (OMIM 300672), KCNQ2-related epileptic encephalopathy (OMIM 613720), SCN2A-related epileptic encephalopathy (OMIM 613721), and SCN8A-related epileptic encephalopathy (OMIM 614558).


Early-onset epileptic encephalopathy Early myoclonic encephalopathy Burst suppression Ohtahara syndrome 


  1. 1.
    Beal JC, Cherian K, Moshe SL. Early-onset epileptic encephalopathies: Ohtahara syndrome and early myoclonic encephalopathy. Pediatr Neurol. 2012;47:317–23.CrossRefGoogle Scholar
  2. 2.
    Djukic A, Lado FA, Shinnar S, Moshé SL. Are early myoclonic encephalopathy (EME) and the Ohtahara syndrome (EIEE) independent of each other? Epilepsy Res. 2006;70:S68–76.CrossRefGoogle Scholar
  3. 3.
    Murakami N, Ohtsuka Y, Ohtahara S. Early infantile epileptic syndromes with suppression-bursts: early myoclonic encephalopathy vs. Ohtahara syndrome. Jpn J Psychiatry Neurol. 1993;47:197–200.PubMedGoogle Scholar
  4. 4.
    Hirose M, Haginoya K, Yokoyama H, et al. Functional cortical deafferentation from the subcortical structures in a patient with early myoclonic encephalopathy: a functional neuroimaging study. Epilepsia. 2010;51:699–702.CrossRefGoogle Scholar
  5. 5.
    Ohtahara S, Ishida T, Oka E, Yamatogy Y, Inoue H. On the specific age-dependent epileptic syndromes: the early-infantile epileptic encephalopathy with suppression-burst. No To Hattatsu. 1976;8:270–80.Google Scholar
  6. 6.
    Ohtahara S. Seizure disorders in infancy and childhood. Brain and Development. 1984;6:509–19.PubMedGoogle Scholar
  7. 7.
    Miller SP, Dilenge ME, Meagher-Villemure K, O’Gorman AM, Shevell MI. Infantile epileptic encephalopathy (Ohtahara syndrome) and migrational disorder. Pediatr Neurol. 1998;19:50–4.CrossRefGoogle Scholar
  8. 8.
    Trinka E, Rauscher C, Nagler M, et al. A case of Ohtahara syndrome with olivary-dentate dysplasia and agenesis of the mamillary bodies. Epilepsia. 2001;42:950–3.CrossRefGoogle Scholar
  9. 9.
    du Plessis AJ, Kaufmann WE, Kupsky WJ. Intra-uterine onset myoclonic encephalopathy associated with cerebral cortical dysgenesis. J Child Neurol. 1993;8:164–70.CrossRefGoogle Scholar
  10. 10.
    Spreafico R, Angelini L, Binelli S, Granata T, Rumi V, Rosti D, Runza L, Bugiani O. Burst suppression and impairment of neocortical ontogenesis: electroclinical and neuropathologic findings in two infants with early myoclonic encephalopathy. Epilepsia. 1993;34(5):800–8.CrossRefGoogle Scholar
  11. 11.
    Williams AN, Gray RG, Poulton K, Ramani P, Whitehouse WP. A case of Ohtahara syndrome with cytochrome oxidase deficiency. Dev Med Child Neurol. 1998;40:568–70.CrossRefGoogle Scholar
  12. 12.
    Singhi P, Ray M. Ohtahara syndrome with biotinidase deficiency. J Child Neurol. 2011;26:507–9.CrossRefGoogle Scholar
  13. 13.
    Castro-Gago M, Blanco-Barca MO, Gómez-Lado C, Eirís-Puñal J, Campos-González Y, Arenas-Barbero J. Respiratory chain complex I deficiency in an infant with Ohtahara syndrome. Brain and Development. 2009;31:322–5.CrossRefGoogle Scholar
  14. 14.
    Saitsu H, Kato M, Mizuguchi T, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet. 2008;40:782–8.CrossRefGoogle Scholar
  15. 15.
    Kato M, Saitoh S, Kamei A, et al. A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome). Am J Hum Genet. 2007;81:361–6.CrossRefGoogle Scholar
  16. 16.
    Eksioglu YZ, Pong AW, Takeoka M. A novel mutation in the Aristaless domain of the ARX gene leads to Ohtahara syndrome, global developmental delay, and ambiguous genitalia in males and neuropsychiatric disorders in females. Epilepsia. 2011;52:984–92.CrossRefGoogle Scholar
  17. 17.
    Ohtahara S, Yamatogi Y. Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res. 2006;70:S58–67.CrossRefGoogle Scholar
  18. 18.
    Ohno M, Shimotsuji Y, Abe J, Shimada M, Tamiya H. Zonisamide treatment of early infantile epileptic encephalopathy. Pediatr Neurol. 2000;23:341–4.CrossRefGoogle Scholar
  19. 19.
    Komaki H, Sugai K, Sasaki M, et al. Surgical treatment of a case of early infantile epileptic encephalopathy with suppression bursts associated with focal cortical dysplasia. Epilepsia. 1999;40:365–9.CrossRefGoogle Scholar
  20. 20.
    Fusco L, Pachatz C, Di Capua M, Vigevano F. Video-EEG aspects of early-infantile epileptic encephalopathy with suppression-bursts (Ohtahara syndrome). Brain and Development. 2001;23:708–14.CrossRefGoogle Scholar
  21. 21.
    Lee WT. Disorders of amino acid metabolism associated with epilepsy. Brain and Development. 2011;33:745–52.CrossRefGoogle Scholar
  22. 22.
    Aukett A, Bennett MJ, Hosking GP. Molybdenum cofactor deficiency: an easily missed inborn error of metabolism. Dev Med Child Neurol. 1988;30:531–5.CrossRefGoogle Scholar
  23. 23.
    Backx L, Ceulemans B, Vermeesch JR, Devriendt K, Van Esch H. Early myoclonic encephalopathy caused by a disruption of the neuregulin-1 receptor ErbB4. Eur J Hum Genet. 2009;17:378–82.CrossRefGoogle Scholar
  24. 24.
    Bahi-Buisson N, Villeneuve N, Caietta E, Jacquette A, Maurey H, Matthijs G, Van Esch H, Delahaye A, Moncla A, Milh M, Zufferey F, Diebold B, Bienvenu T. Recurrent mutations in the CDKL5 gene: genotype-phenotype relationships. Am J Med Genet A. 2012;158A(7):1612–9.CrossRefGoogle Scholar
  25. 25.
    Bahi-Buisson N, Kaminska A, Boddaert N, Rio M, Afenjar A, Gérard M, Giuliano F, Motte J, Héron D, Morel MA, Plouin P, Richelme C, des Portes V, Dulac O, Philippe C, Chiron C, Nabbout R, Bienvenu T. The three stages of epilepsy in patients with CDKL5 mutations. Epilepsia. 2008;49(6):1027–37.CrossRefGoogle Scholar
  26. 26.
    Weckhuysen S, Mandelstam S, Suls A, et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol. 2012;71:15–25.CrossRefGoogle Scholar
  27. 27.
    Pisano T, Numis AL, Heavin SB, Weckhuysen S, Angriman M, Suls A, Podesta B, Thibert RL, Shapiro KA, Guerrini R, Scheffer IE, Marini C, Cilio MR. Early and effective treatment of KCNQ2 encephalopathy. Epilepsia. 2015;56(5):685–91.CrossRefGoogle Scholar
  28. 28.
    Wolff M, Johannesen KM, UBS H, Masnada S, Rubboli G, Gardella E, Lesca G, Ville D, Milh M, Villard L, Afenjar A, Chantot-Bastaraud S, Mignot C, Lardennois C, Nava C, Schwarz N, Gérard M, Perrin L, Doummar D, Auvin S, Miranda MJ, Hempel M, Brilstra E, Knoers N, Verbeek N, van Kempen M, Braun KP, Mancini G, Biskup S, Hörtnagel K, Döcker M, Bast T, Loddenkemper T, Wong-Kisiel L, Baumeister FM, Fazeli W, Striano P, Dilena R, Fontana E, Zara F, Kurlemann G, Klepper J, Thoene JG, Arndt DH, Deconinck N, Schmitt-Mechelke T, Maier O, Muhle H, Wical B, Finetti C, Brückner R, Pietz J, Golla G, Jillella D, Linnet KM, Charles P, Moog U, Õiglane-Shlik E, Mantovani JF, Park K, Deprez M, Lederer D, Mary S, Scalais E, Selim L, Van Coster R, Lagae L, Nikanorova M, Hjalgrim H, Korenke GC, Trivisano M, Specchio N, Ceulemans B, Dorn T, Helbig KL, Hardies K, Stamberger H, de Jonghe P, Weckhuysen S, Lemke JR, Krägeloh-Mann I, Helbig I, Kluger G, Lerche H, Møller RS. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain. 2017;140(5):1316–36.CrossRefGoogle Scholar
  29. 29.
    Howell KB, McMahon JM, Carvill GL, Tambunan D, Mackay MT, Rodriguez-Casero V, Webster R, Clark D, Freeman JL, Calvert S, Olson HE, Mandelstam S, Poduri A, Mefford HC, Harvey AS, Scheffer IE. SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures. Neurology. 2015;85(11):958–66.CrossRefGoogle Scholar
  30. 30.
    Barker BS, Ottolini M, Wagnon JL, Hollander RM, Meisler MH, Patel MK. The SCN8A encephalopathy mutation p.Ile1327Val displays elevated sensitivity to the anticonvulsant phenytoin. Epilepsia. 2016;57(9):1458–66.CrossRefGoogle Scholar
  31. 31.
    Gardella E, Marini C, Trivisano M, Fitzgerald MP, Alber M, Howell KB, Darra F, Siliquini S, Bölsterli BK, Masnada S, Pichiecchio A, Johannesen KM, Jepsen B, Fontana E, Anibaldi G, Russo S, Cogliati F, Montomoli M, Specchio N, Rubboli G, Veggiotti P, Beniczky S, Wolff M, Helbig I, Vigevano F, Scheffer IE, Guerrini R, Møller RS. The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology. 2018;91(12):e1112–24.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Rare and Complex Epilepsy Unit, Department of Neuroscience and NeurorehabilitationBambino Gesù Children’s HospitalRomeItaly

Personalised recommendations