Normal Sleep EEG

  • Anna Elisabetta Vaudano
  • Nicoletta Azzi
  • Irene Trippi


The electroencephalogram (EEG) is the fundamental and most common tool used in sleep research. Normal human sleep comprises two states—rapid eye movement (REM) and non-REM (NREM) sleep—that alternate cyclically across the night. Each state presents typical features that can be detected by EEG and polygraphic channels: NREM sleep includes synchronous cortical electroencephalogram elements (sleep spindles, K-complexes, and slow waves) associated with low muscle tonus; in REM sleep, EEG is desynchronized, muscles are atonic, and dreaming is typically reported. A clear appreciation of the physiological characteristics of sleep provides a strong background for understanding clinical conditions in which “normal” characteristics are altered. The goal of this chapter is to define and describe the EEG-based recognizable elements of physiological sleep in humans, with attention to their clinical implications and their significance for better understanding the underlying cerebral mechanisms. Updated theories of sleep features, function and underlying brain circuits are discussed based on advanced neurophysiological techniques. We focus to the normal EEG sleep pattern in young adults as a working baseline pattern. However, normative changes due to aging and other factors are described.


Sleep Delta K-complexes Spindles Aging Human physiology NREM sleep REM sleep CAP Phasic sleep events 


  1. 1.
    Lo JC, Dijk D-J, Groeger JA. Comparing the effects of nocturnal sleep and daytime napping on declarative memory consolidation. PLoS One. 2014;9:e108100.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Oakland, CA: University of California; 1968.Google Scholar
  3. 3.
    AASM Manual. For the scoring of sleep and associate events. Rules, terminology and technical specifications. Westchester, IL: American Academy of Sleep Medicine; 2007.Google Scholar
  4. 4.
    Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437:1257–63.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24:726–31.PubMedGoogle Scholar
  6. 6.
    Lo C-C, Chou T, Penzel T, Scammell TE, Strecker RE, Stanley HE, et al. Common scale-invariant patterns of sleep-wake transitions across mammalian species. Proc Natl Acad Sci U S A. 2004;101:17545–8.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Behn CGD, Brown EN, Scammell TE, Kopell NJ. Mathematical model of network dynamics governing mouse sleep-wake behavior. J Neurophysiol. 2007;97:3828–40.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Halász P, Bódizs R. Dynamic NREM sleep regulation models. In: Dynamic structure of NREM sleep. London: Springer; 2013. p. 7–11.Google Scholar
  9. 9.
    Halász P. The role of micro-arousals in the regulation of sleep. Ideggyogyaszati Szle. 2006;59:252–60.Google Scholar
  10. 10.
    Halász P. The K-complex as a special reactive sleep slow wave—a theoretical update. Sleep Med Rev. 2016;29:34–40.PubMedGoogle Scholar
  11. 11.
    Tononi G, Cirelli C. Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull. 2003;62:143–50.PubMedGoogle Scholar
  12. 12.
    Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81:12–34.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Parrino L, Vaudano AE. The resilient brain and the guardians of sleep: new perspectives on old assumptions. Sleep Med Rev. 2018;39:98–107.PubMedGoogle Scholar
  14. 14.
    Takahashi K, Kayama Y, Lin JS, Sakai K. Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience. 2010;169:1115–26.PubMedGoogle Scholar
  15. 15.
    Ruyi Foong, Kai Keng Ang, Chai Quek, Cuntai Guan, Aung Aung Phyo Wai. An analysis on driver drowsiness based on reaction time and EEG band power. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Milan; 2015 [cited 2018 May 15]. p. 7982–5.Google Scholar
  16. 16.
    Sekine A, Niiyama Y, Kutsuzawa O, Shimizu T. A negative component superimposed on event-related potentials during light drowsiness. Psychiatry Clin Neurosci. 2001;55:473–8.PubMedGoogle Scholar
  17. 17.
    Wada Y, Nanbu Y, Koshino Y, Shimada Y, Hashimoto T. Inter- and intrahemispheric EEG coherence during light drowsiness. Clin EEG Electroencephalogr. 1996;27:84–8.Google Scholar
  18. 18.
    Vecchio F, Miraglia F, Gorgoni M, Ferrara M, Iberite F, Bramanti P, et al. Cortical connectivity modulation during sleep onset: a study via graph theory on EEG data. Hum Brain Mapp. 2017;38:5456–64.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Goldie L, Green JM. Paradoxical blocking and arousal in the drowsy state. Nature. 1960;187:952–3.PubMedGoogle Scholar
  20. 20.
    Niedermeyer E, Pribram HF. Unilateral suppression of vertex sharp waves in the sleep electroencephalogram (case report). Electroencephalogr Clin Neurophysiol. 1966;20:401–4.PubMedGoogle Scholar
  21. 21.
    Chang BS, Schomer DL, Niedermayer E. Normal EEG and sleep; adults and elderly. In: Schomer DL, Lopes de Silva FH, editors. Niedermeyer’s electroencephalography: basic principles, clinical applications and related fields. Philadelphia, PA: Lippincott Williams & Wilkins; 2010. p. 183–214.Google Scholar
  22. 22.
    Colrain IM, Campbell KB. The use of evoked potentials in sleep research. Sleep Med Rev. 2007;11:277–93.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Bastien CH, Crowley KE, Colrain IM. Evoked potential components unique to non-REM sleep: relationship to evoked K-complexes and vertex sharp waves. Int J Psychophysiol. 2002;46:257–74.PubMedGoogle Scholar
  24. 24.
    Gora J, Colrain IM, Trinder J. The investigation of K-complex and vertex sharp wave activity in response to mid-inspiratory occlusions and complete obstructions to breathing during NREM sleep. Sleep. 2001;24:81–9.PubMedGoogle Scholar
  25. 25.
    Lu ST, Kajola M, Joutsiniemi SL, Knuutila J, Hari R. Generator sites of spontaneous MEG activity during sleep. Electroencephalogr Clin Neurophysiol. 1992;82:182–96.PubMedGoogle Scholar
  26. 26.
    Stern JM, Caporro M, Haneef Z, Yeh HJ, Buttinelli C, Lenartowicz A, et al. Functional imaging of sleep vertex sharp transients. Clin Neurophysiol. 2011;122:1382–6.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Grigg-Damberger M, Gozal D, Marcus CL, Quan SF, Rosen CL, Chervin RD, et al. The visual scoring of sleep and arousal in infants and children. J Clin Sleep Med. 2007;3:201–40.PubMedGoogle Scholar
  28. 28.
    Hughes JR. The development of the vertex sharp transient. Clin EEG Electroencephalogr. 1998;29:183–7.Google Scholar
  29. 29.
    Rey V, Aybek S, Maeder-Ingvar M, Rossetti AO. Positive occipital sharp transients of sleep (POSTS): a reappraisal. Clin Neurophysiol. 2009;120:472–5.PubMedGoogle Scholar
  30. 30.
    Pristasová E, Procházka M, Cigánek L. Theta rhythms and positive bioccipital waves in the EEG during sleep. Psychiatr Neurol Med Psychol (Leipz). 1983;35:656–60.Google Scholar
  31. 31.
    Hughes JR, Means ED, Stell BS. A controlled study on the behavior disorders associated with the positive spike phenomenon. Electroencephalogr Clin Neurophysiol. 1965;18:349–53.PubMedGoogle Scholar
  32. 32.
    Saito M, Ishida T, Nakamura M, Ihara M, Murase I. Factors affecting the occurrence of high-frequency positive occipital sharp transients of sleep. Keio J Med. 2003;52:25–9.PubMedGoogle Scholar
  33. 33.
    Vignaendra V, Matthews RL, Chatrian GE. Positive occipital sharp transients of sleep: relationships to nocturnal sleep cycle in man. Electroencephalogr Clin Neurophysiol. 1974;37:239–46.PubMedGoogle Scholar
  34. 34.
    Brenner RP, Zauel DW, Carlow TJ. Positive occipital sharp transients of sleep in the blind. Neurology. 1978;28:609–12.PubMedGoogle Scholar
  35. 35.
    Loomis AL, Harvey EN, Hobart GA. Distribution of disturbance-patterns in the human electroencephalogram, with special reference to sleep. J Neurophysiol. 1938;1:413–30.Google Scholar
  36. 36.
    Cote KA, de Lugt DR, Langley SD, Campbell KB. Scalp topography of the auditory evoked K-complex in stage 2 and slow wave sleep. J Sleep Res. 1999;8:263–72.PubMedGoogle Scholar
  37. 37.
    Colrain IM. The K-complex: a 7-decade history. Sleep. 2005;28:255–73.PubMedGoogle Scholar
  38. 38.
    Colrain IM, Sullivan EV, Rohlfing T, Baker FC, Nicholas CL, Padilla ML, et al. Independent contributions of cortical gray matter, aging, sex and alcoholism to K-complex amplitude evoked during sleep. Sleep. 2011;34:787–95.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Curcio G, Ferrara M, Pellicciari MC, Cristiani R, De Gennaro L. Effect of total sleep deprivation on the landmarks of stage 2 sleep. Clin Neurophysiol. 2003;114:2279–85.PubMedGoogle Scholar
  40. 40.
    Steriade M. Neuronal substrates of sleep and epilepsy. Cambridge; New York: Cambridge University Press; 2003.Google Scholar
  41. 41.
    Halász P, Terzano M, Parrino L, Bódizs R. The nature of arousal in sleep. J Sleep Res. 2004;13:1–23.PubMedGoogle Scholar
  42. 42.
    Riedner BA, Hulse BK, Murphy MJ, Ferrarelli F, Tononi G. Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. Prog Brain Res. 2011;193:201–18.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Tank J, Diedrich A, Hale N, Niaz FE, Furlan R, Robertson RM, et al. Relationship between blood pressure, sleep K-complexes, and muscle sympathetic nerve activity in humans. Am J Physiol Regul Integr Comp Physiol. 2003;285:R208–14.PubMedGoogle Scholar
  44. 44.
    Niiyama Y, Satoh N, Kutsuzawa O, Hishikawa Y. Electrophysiological evidence suggesting that sensory stimuli of unknown origin induce spontaneous K-complexes. Electroencephalogr Clin Neurophysiol. 1996;98:394–400.PubMedGoogle Scholar
  45. 45.
    Roth M, Shaw J, Green J. The form voltage distribution and physiological significance of the K-complex. Electroencephalogr Clin Neurophysiol. 1956;8:385–402.PubMedGoogle Scholar
  46. 46.
    Sallinen M, Kaartinen J, Lyytinen H. Precursors of the evoked K-complex in event-related brain potentials in stage 2 sleep. Electroencephalogr Clin Neurophysiol. 1997;102:363–73.PubMedGoogle Scholar
  47. 47.
    Laurino M, Menicucci D, Piarulli A, Mastorci F, Bedini R, Allegrini P, et al. Disentangling different functional roles of evoked K-complex components: mapping the sleeping brain while quenching sensory processing. NeuroImage. 2014;86:433–45.PubMedGoogle Scholar
  48. 48.
    Nicholas CL, Trinder J, Colrain IM. Increased production of evoked and spontaneous K-complexes following a night of fragmented sleep. Sleep. 2002;25:882–7.PubMedGoogle Scholar
  49. 49.
    Halász P. Hierarchy of micro-arousals and the microstructure of sleep. Neurophysiol Clin. 1998;28:461–75.PubMedGoogle Scholar
  50. 50.
    Crowley K, Trinder J, Kim Y, Carrington M, Colrain IM. The effects of normal aging on sleep spindle and K-complex production. Clin Neurophysiol. 2002;113:1615–22.PubMedGoogle Scholar
  51. 51.
    Colrain IM, Crowley KE, Nicholas CL, Afifi L, Baker FC, Padilla M, et al. Sleep evoked delta frequency responses show a linear decline in amplitude across the adult lifespan. Neurobiol Aging. 2010;31:874–83.PubMedGoogle Scholar
  52. 52.
    Mölle M, Bergmann TO, Marshall L, Born J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep. 2011;34:1411–21.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Andrillon T, Nir Y, Staba RJ, Ferrarelli F, Cirelli C, Tononi G, et al. Sleep spindles in humans: insights from intracranial EEG and unit recordings. J Neurosci. 2011;31:17821–34.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Nader RS, Smith CT. Correlations between adolescent processing speed and specific spindle frequencies. Front Hum Neurosci. 2015;9:30.PubMedPubMedCentralGoogle Scholar
  55. 55.
    De Gennaro L, Ferrara M. Sleep spindles: an overview. Sleep Med Rev. 2003;7:423–40.PubMedGoogle Scholar
  56. 56.
    Lüthi A. Sleep spindles: where they come from, what they do. Neurosci Rev J Bring Neurobiol Neurol Psychiatry. 2014;20:243–56.Google Scholar
  57. 57.
    Astori S, Wimmer RD, Lüthi A. Manipulating sleep spindles—expanding views on sleep, memory, and disease. Trends Neurosci. 2013;36:738–48.PubMedGoogle Scholar
  58. 58.
    Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J, et al. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 2007;104:13164–9.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ayoub A, Aumann D, Hörschelmann A, Kouchekmanesch A, Paul P, Born J, et al. Differential effects on fast and slow spindle activity, and the sleep slow oscillation in humans with carbamazepine and flunarizine to antagonize voltage-dependent Na+ and Ca2+ channel activity. Sleep. 2013;36:905–11.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Clawson BC, Durkin J, Aton SJ. Form and function of sleep spindles across the lifespan. Neural Plast. 2016;2016:6936381.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Hagne I. Development of the EEG in normal infants during the first year of life. A longitudinal study. Acta Paediatr Scand Suppl. 1972;232:1–53.PubMedGoogle Scholar
  62. 62.
    Gaillard J-M, Baudat J, Blois R. The effect of sex depressive state and minor tranquilizers on K potentials and spindles during sleep. Clin Neurol Neurosurg. 1987;89:172–3.Google Scholar
  63. 63.
    Mölle M, Marshall L, Gais S, Born J. Learning increases human electroencephalographic coherence during subsequent slow sleep oscillations. Proc Natl Acad Sci U S A. 2004;101:13963–8.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G. The sleep slow oscillation as a traveling wave. J Neurosci. 2004;24:6862–70.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Nir Y, Mukamel R, Dinstein I, Privman E, Harel M, Fisch L, et al. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat Neurosci. 2008;11:1100–8.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Mander BA, Winer JR, Walker MP. Sleep and Human Aging. Neuron. 2017;94:19–36.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Vijayan S, Klerman EB, Adler GK, Kopell NJ. Thalamic mechanisms underlying alpha-delta sleep with implications for fibromyalgia. J Neurophysiol. 2015;114:1923–30.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Van Hoof E, De Becker P, Lapp C, Cluydts R, De Meirleir K. Defining the occurrence and influence of alpha-delta sleep in chronic fatigue syndrome. Am J Med Sci. 2007;333:78–84.PubMedGoogle Scholar
  69. 69.
    Jaimchariyatam N, Rodriguez CL, Budur K. Prevalence and correlates of alpha-delta sleep in major depressive disorders. Innov Clin Neurosci. 2011;8:35–49.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Scheuler W, Kubicki S, Marquardt J, Scholz G, Weiβ KH, Henkes H, et al. The alpha-sleep pattern—quantitative analysis and functional aspects. In: Koella WP, Obal F, Schulz H, Visser P, editors. Sleep, vol. 1988. Stuttgart: Fischer; 1986.Google Scholar
  71. 71.
    Steriade M, Contreras D, Curró Dossi R, Nuñez A. The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci. 1993;13:3284–99.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Steriade M, Timofeev I, Grenier F. Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol. 2001;85:1969–85.PubMedGoogle Scholar
  73. 73.
    Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex. 2000;10:1185–99.PubMedGoogle Scholar
  74. 74.
    Sanchez-Vives MV, McCormick DA. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci. 2000;3:1027–34.PubMedGoogle Scholar
  75. 75.
    Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci. 2002;22:8691–704.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Compte A, Sanchez-Vives MV, McCormick DA, Wang X-J. Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J Neurophysiol. 2003;89:2707–25.PubMedGoogle Scholar
  77. 77.
    Timofeev I, Steriade M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiol. 1996;76:4152–68.PubMedGoogle Scholar
  78. 78.
    Shu Y, Hasenstaub A, McCormick DA. Turning on and off recurrent balanced cortical activity. Nature. 2003;423:288–93.PubMedGoogle Scholar
  79. 79.
    Caporro M, Haneef Z, Yeh HJ, Lenartowicz A, Buttinelli C, Parvizi J, et al. Functional MRI of sleep spindles and K-complexes. Clin Neurophysiol. 2012;123:303–9.PubMedGoogle Scholar
  80. 80.
    Jahnke K, von Wegner F, Morzelewski A, Borisov S, Maischein M, Steinmetz H, et al. To wake or not to wake? The two-sided nature of the human K-complex. NeuroImage. 2012;59:1631–8.PubMedGoogle Scholar
  81. 81.
    Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, et al. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep. 2007;30:1643–57.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev. 2006;10:49–62.PubMedGoogle Scholar
  83. 83.
    Esser SK, Hill SL, Tononi G. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep. 2007;30:1617–30.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G. Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep. 2007;30:1631–42.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC, et al. Cortical firing and sleep homeostasis. Neuron. 2009;63:865–78.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Colrain IM, Baker FC. Changes in sleep as a function of adolescent development. Neuropsychol Rev. 2011;21:5–21.PubMedGoogle Scholar
  87. 87.
    Ringli M, Huber R. Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior. Prog Brain Res. 2011;193:63–82.PubMedGoogle Scholar
  88. 88.
    Kurth S, Ringli M, Geiger A, LeBourgeois M, Jenni OG, Huber R. Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study. J Neurosci. 2010;30:13211–9.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Feinberg I, Campbell IG. Sleep EEG changes during adolescence: an index of a fundamental brain reorganization. Brain Cogn. 2010;72:56–65.PubMedGoogle Scholar
  90. 90.
    Matsuo F. Recognition of REM sleep in standard EEG. Electroencephalogr Clin Neurophysiol. 1981;52:490–3.PubMedGoogle Scholar
  91. 91.
    Jouvet M, Michel F, Mounier D. Analyse électroencépholographique comparée du sommeil physiologique chez le chat et chez l’homme. Revue Neurologique. 1960;103:189D–205D.Google Scholar
  92. 92.
    Berger RJ, Olley P, Oswald I. The EEC, eye-movements and dreams of the blind. Q J Exp Psychol. 1962;14:183–6.Google Scholar
  93. 93.
    Yasoshima A, Hayashi H, Iijima S, Sugita Y, Teshima Y, Shimizu T, et al. Potential distribution of vertex sharp wave and saw-toothed wave on the scalp. Electroencephalogr Clin Neurophysiol. 1984;58:73–6.PubMedGoogle Scholar
  94. 94.
    Broughton R, Hasan J. Quantitative topographic electroencephalographic mapping during drowsiness and sleep onset. J Clin Neurophysiol. 1995;12:372–86.PubMedGoogle Scholar
  95. 95.
    Curzi-Dascalova L. Waking and sleeping E.E.G. in normal babies before 6 months of age (author’s transl). Rev Electroencephalogr Neurophysiol Clin. 1977;7:316–26.PubMedGoogle Scholar
  96. 96.
    Pearl PL, LaFleur BJ, Reigle SC, Rich AS, Freeman AAH, McCutchen C, et al. Sawtooth wave density analysis during REM sleep in normal volunteers. Sleep Med. 2002;3:255–8.PubMedGoogle Scholar
  97. 97.
    Sato S, McCutchen C, Graham B, Freeman A, von Albertini-Carletti I, Alling DW. Relationship between muscle tone changes, sawtooth waves and rapid eye movements during sleep. Electroencephalogr Clin Neurophysiol. 1997;103:627–32.PubMedGoogle Scholar
  98. 98.
    Takahara M, Kanayama S, Hori T. Co-occurrence of sawtooth waves and rapideye movements during REM sleep. Int J Bioelectromagn. 2009;11:144–8.Google Scholar
  99. 99.
    Kober SE, Wood G, Kampl C, Neuper C, Ischebeck A. Electrophysiological correlates of mental navigation in blind and sighted people. Behav Brain Res. 2014;273:106–15.PubMedGoogle Scholar
  100. 100.
    Balzamo E. States of wakefulness and ponto-geniculo-cortical activities (PGC) in Papio anubis (author’s transl). Electroencephalogr Clin Neurophysiol. 1980;48:694–705.PubMedGoogle Scholar
  101. 101.
    Siegel H, McCutchen C, Dalakas MC, Freeman A, Graham B, Alling D, et al. Physiologic events initiating REM sleep in patients with the postpolio syndrome. Neurology. 1999;52:516–22.PubMedGoogle Scholar
  102. 102.
    Oksenberg A, Gordon C, Arons E, Sazbon L. Phasic activities of rapid eye movement sleep in vegetative state patients. Sleep. 2001;24:703–6.PubMedGoogle Scholar
  103. 103.
    Bassetti CL, Aldrich MS. Sleep electroencephalogram changes in acute hemispheric stroke. Sleep Med. 2001;2:185–94.PubMedGoogle Scholar
  104. 104.
    Vega-Bermudez F, Szczepanski S, Malow B, Sato S. Sawtooth wave density analysis during REM sleep in temporal lobe epilepsy patients. Sleep Med. 2005;6:367–70.PubMedGoogle Scholar
  105. 105.
    Terzano MG, Parrino L, Mennuni GF. Associazione Italiana di Medicina del Sonno, editors. Eventi fasici e microstruttura del sonno = phasic events and microstructure of sleep. Martano: Lecce; 1997.Google Scholar
  106. 106.
    Terzano MG, Parrino L. Origin and significance of the cyclic alternating pattern (CAP). Sleep Med Rev. 2000;4:101–23.PubMedGoogle Scholar
  107. 107.
    Terzano MG, Mancia D, Salati MR, Costani G, Decembrino A, Parrino L. The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep. 1985;8:137–45.PubMedGoogle Scholar
  108. 108.
    Bonnet MH, Carley DW, Carskadon MA, Easton PA, Guilleminault C, Harper RM, et al. EEG arousals: scoring rules and examples: a preliminary report from the Sleep Disorders Atlas Task Force of the American Sleep Disorders Association. Sleep. 1992;15:173–84.Google Scholar
  109. 109.
    Ferri R, Bruni O, Miano S, Terzano MG. Topographic mapping of the spectral components of the cyclic alternating pattern (CAP). Sleep Med. 2005;6:29–36.PubMedGoogle Scholar
  110. 110.
    Parrino L, Ferri R, Bruni O, Terzano MG. Cyclic alternating pattern (CAP): the marker of sleep instability. Sleep Med Rev. 2012;16:27–45.PubMedGoogle Scholar
  111. 111.
    Terzano MG, Parrino L, Fioriti G, Spaggiari MC, Piroli A. Morphologic and functional features of cyclic alternating pattern (CAP) sequences in normal NREM sleep. Funct Neurol. 1986;1:29–41.PubMedGoogle Scholar
  112. 112.
    Parrino L, Boselli M, Spaggiari MC, Smerieri A, Terzano MG. Cyclic alternating pattern (CAP) in normal sleep: polysomnographic parameters in different age groups. Electroencephalogr Clin Neurophysiol. 1998;107:439–50.PubMedGoogle Scholar
  113. 113.
    Bruni O, Ferri R, Miano S, Verrillo E, Vittori E, Della Marca G, et al. Sleep cyclic alternating pattern in normal school-age children. Clin Neurophysiol. 2002;113:1806–14.PubMedGoogle Scholar
  114. 114.
    Bruni O, Ferri R, Miano S, Verrillo E, Vittori E, Farina B, et al. Sleep cyclic alternating pattern in normal preschool-aged children. Sleep. 2005;28:220–30.PubMedGoogle Scholar
  115. 115.
    Lopes MC, Rosa A, Roizenblatt S, Guilleminault C, Passarelli C, Tufik S, et al. Cyclic alternating pattern in peripubertal children. Sleep. 2005;28:215–9.PubMedGoogle Scholar
  116. 116.
    Miano S, PiaVilla M, Blanco D, Zamora E, Rodriguez R, Ferri R, et al. Development of NREM sleep instability-continuity (cyclic alternating pattern) in healthy term infants aged 1 to 4 months. Sleep. 2009;32:83–90.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Boselli M, Parrino L, Smerieri A, Terzano MG. Effect of age on EEG arousals in normal sleep. Sleep. 1998;21:351–7.PubMedGoogle Scholar
  118. 118.
    Carskadon M, Keenan S, Dement WC. Nighttime sleep and daytime sleep tendency in preadolescents. In: Guilleminault C, editor. Sleep and its disorders in children. New York: Raven Press; 1987.Google Scholar
  119. 119.
    Bruni O, Ferri R, Vittori E, Novelli L, Vignati M, Porfirio MC, et al. Sleep architecture and NREM alterations in children and adolescents with Asperger syndrome. Sleep. 2007;30:1577–85.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anna Elisabetta Vaudano
    • 1
  • Nicoletta Azzi
    • 1
  • Irene Trippi
    • 1
  1. 1.Department of Medicine and Surgery, Sleep Medicine CenterUniversity of ParmaParmaItaly

Personalised recommendations