Advertisement

HOC-Tree: A Novel Index for Efficient Spatio-Temporal Range Search

  • Jun Long
  • Lei Zhu
  • Chengyuan ZhangEmail author
  • Shuangqiao Lin
  • Zhan Yang
  • Xinpan Yuan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11154)

Abstract

With the rapid development of mobile computing and Web services, a huge amount of data with spatial and temporal information have been collected everyday by smart mobile terminals, in which an object is described by its spatial information and temporal information. Motivated by the significance of spatio-temporal range search and the lack of efficient search algorithm, in this paper, we study the problem of spatio-temporal range search (STRS), a novel index structure is proposed, called HOC-Tree, which is based on Hilbert curve and OC-Tree, and takes both spatial and temporal information into consideration. Based on HOC-Tree, we develop an efficient algorithm to solve the problem of spatio-temporal range search. Comprehensive experiments on real and synthetic data demonstrate that our method is more efficient than the state-of-the-art technique.

Keywords

Hilbert curve Spatio-temporal Range search HOC-Tree 

Notes

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (61702560, 61379110, 61472450), the Key Research Program of Hunan Province (2016JC2018), Natural Science Foundation of Hunan Province (2018JJ3691), and Science and Technology Plan of Hunan Province (2016JC2011).

References

  1. 1.
    Armenatzoglou, N., Papadopoulos, S., Papadias, D.: A general framework for geo-social query processing. PVLDB 6(10), 913–924 (2013)Google Scholar
  2. 2.
    Deng, K., Li, X., Lu, J., Zhou, X.: Best keyword cover search. IEEE Trans. Knowl. Data Eng. 27(1), 61–73 (2015)CrossRefGoogle Scholar
  3. 3.
    Guo, T., Cao, X., Cong, G.: Efficient algorithms for answering the m-closest keywords query. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, 31 May–4 June 2015, pp. 405–418 (2015)Google Scholar
  4. 4.
    Liu, W., Sun, W., Chen, C., Huang, Y., Jing, Y., Chen, K.: Circle of friend query in geo-social networks. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012. LNCS, vol. 7239, pp. 126–137. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29035-0_9CrossRefGoogle Scholar
  5. 5.
    Long, C., Wong, R.C., Wang, K., Fu, A.W.: Collective spatial keyword queries: a distance owner-driven approach. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, 22–27 June 2013, pp. 689–700 (2013)Google Scholar
  6. 6.
    Scellato, S., Noulas, A., Lambiotte, R., Mascolo, C.: Socio-spatial properties of online location-based social networks. In: Proceedings of the Fifth International Conference on Weblogs and Social Media, Barcelona, Catalonia, Spain, 17–21 July 2011 (2011)Google Scholar
  7. 7.
    Beckmann, N., Kriegel, H.P., Schneider, R., et al.: The R*-tree: an efficient and robust access method for points and rectangles. ACM SIGMOD Rec. 19(2), 322–331 (1990)CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Lin, X., Wu, L., Zhang, W.: Effective multi-query expansions: collaborative deep networks for robust landmark retrieval. IEEE Trans. Image Process. 26(3), 1393–1404 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wang, Y., Lin, X., Wu, L., Zhang, W., Zhang, Q.: Exploiting correlation consensus: towards subspace clustering for multi-modal data. In: Proceedings of the ACM International Conference on Multimedia, MM 2014, Orlando, FL, USA, 03–07 November 2014, pp. 981–984 (2014)Google Scholar
  10. 10.
    Wang, Y., Lin, X., Wu, L., Zhang, W., Zhang, Q.: LBMCH: learning bridging mapping for cross-modal hashing. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9–13 August 2015, pp. 999–1002 (2015)Google Scholar
  11. 11.
    Wang, Y., Lin, X., Wu, L., Zhang, W., Zhang, Q., Huang, X.: Robust subspace clustering for multi-view data by exploiting correlation consensus. IEEE Trans. Image Process. 24(11), 3939–3949 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wang, Y., Lin, X., Zhang, Q., Wu, L.: Shifting hypergraphs by probabilistic voting. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI), vol. 8444, pp. 234–246. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06605-9_20CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Wu, L.: Beyond low-rank representations: orthogonal clustering basis reconstruction with optimized graph structure for multi-view spectral clustering. Neural Netw. 103, 1–8 (2018)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Wu, L., Lin, X., Gao, J.: Multiview spectral clustering via structured low-rank matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 29, 4833–4843 (2018)CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Zhang, W., Wu, L., Lin, X., Zhao, X.: Unsupervised metric fusion over multiview data by graph random walk-based cross-view diffusion. IEEE Trans. Neural Netw. Learn. Syst. 28(1), 57–70 (2017)CrossRefGoogle Scholar
  16. 16.
    Wu, L., Wang, Y., Gao, J., Li, X.: Deep adaptive feature embedding with local sample distributions for person re-identification. Pattern Recognit. 73, 275–288 (2018)CrossRefGoogle Scholar
  17. 17.
    Wu, L., Wang, Y., Ge, Z., Hu, Q., Li, X.: Structured deep hashing with convolutional neural networks for fast person re-identification. Comput. Vis. Image Underst. 167, 63–73 (2018)CrossRefGoogle Scholar
  18. 18.
    Wu, L., Wang, Y., Li, X., et al.: Deep attention-based spatially recursive networks for fine-grained visual recognition. IEEE Trans. Cybern. PP(99), 1–12 (2018)Google Scholar
  19. 19.
    Wu, L., Wang, Y., Li, X., Gao, J.: What-and-where to match: deep spatially multiplicative integration networks for person re-identification. Pattern Recognit. 76, 727–738 (2018)CrossRefGoogle Scholar
  20. 20.
    Yang, D., Shen, C., Lee, W., Chen, M.: On socio-spatial group query for location-based social networks. In: 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, Beijing, China, 12–16 August 2012, pp. 949–957 (2012)Google Scholar
  21. 21.
    Zhang, C., Zhang, Y., Zhang, W., Lin, X.: Inverted linear quadtree: efficient top K spatial keyword search. In: 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, 8–12 April 2013, pp. 901–912 (2013)Google Scholar
  22. 22.
    Zhang, C., Zhang, Y., Zhang, W., Lin, X.: Inverted linear quadtree: efficient top K spatial keyword search. IEEE Trans. Knowl. Data Eng. 28(7), 1706–1721 (2016)CrossRefGoogle Scholar
  23. 23.
    Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified spatial keyword search on road networks. In: Proceedings of the 17th International Conference on Extending Database Technology, EDBT 2014, Athens, Greece, 24–28 March 2014, pp. 367–378 (2014)Google Scholar
  24. 24.
    Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K.H., Kitsuregawa, M.: Keyword search in spatial databases: towards searching by document. In: Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, 29 March–2 April 2009, Shanghai, China, pp. 688–699 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jun Long
    • 1
    • 2
  • Lei Zhu
    • 1
    • 2
  • Chengyuan Zhang
    • 1
    • 2
    Email author
  • Shuangqiao Lin
    • 1
    • 2
  • Zhan Yang
    • 1
    • 2
  • Xinpan Yuan
    • 3
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Big Data and Knowledge Engineering InstituteCentral South UniversityChangshaPeople’s Republic of China
  3. 3.School of ComputerHunan University of TechnologyZhuzhouChina

Personalised recommendations