Advertisement

Interesting Recommendations Based on Hierarchical Visualizations of Medical Data

  • Ibrahim A. IbrahimEmail author
  • Abdulqader M. Almars
  • Suresh Pokharel
  • Xin Zhao
  • Xue Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11154)

Abstract

Due to the dramatic growth in Electronic Health Records (EHR), many opportunities are arising for discovering new medical knowledge. Those kinds of knowledge are useful for related stakeholders such as hospital planners, data analysts, doctors, insurance companies for better patients’ management. However, many challenges need to be addressed while dealing with medical domain such as (1) how to measure the interestingness of information (2) how to visualize such interestingness (3) how to handle high dimensionality of medical data. To address these challenges, we present MedVIS, an interactive tool to visually explore the data space and finds interesting visualizations compared with another dataset. MedVIS structures visualizations into a hierarchical coherent tree to reveal interestingness of dimensions and other measures. We introduce a novel analysis work flow, and discuss various optimization mechanisms to effectively and efficiently explore the data space. Additionally, we discuss various approaches to mitigate the problem of high-dimensional medical data analysis and its visual exploration. In our experiments, we apply MedVIS to a real-world dataset and show promising visualization outcomes in terms of effectiveness and efficiency.

Keywords

Big data visualizations Visual analytics Knowledge discovery 

References

  1. 1.
    Almars, A., Li, X., Zhao, X., Ibrahim, I.A., Yuan, W., Li, B.: Structured sentiment analysis. In: Cong, G., Peng, W.C., Zhang, W., Li, C., Sun, A. (eds.) ADMA 2017. LNCS, vol. 10604, pp. 695–707. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69179-4_49CrossRefGoogle Scholar
  2. 2.
    Fisher, D.: Hotmap: looking at geographic attention. IEEE Trans. Vis. Comput. Graph. 13(6), 1184–1191 (2007)CrossRefGoogle Scholar
  3. 3.
    Gonzalez, H., et al.: Google fusion tables: web-centered data management and collaboration. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, 6–10 June 2010, pp. 1061–1066 (2010)Google Scholar
  4. 4.
    Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: Proceedings ACM SIGMOD International Conference on Management of Data, SIGMOD 1997, Tucson, Arizona, USA, 13–15 May 1997, pp. 171–182 (1997)Google Scholar
  5. 5.
    Holzinger, A.: Biomedical Informatics: Discovering Knowledge in Big Data, 1st edn. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Holzinger, A., Jurisica, I.: Knowledge discovery and data mining in biomedical informatics: the future is in integrative, interactive machine learning solutions. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 1–18. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43968-5_1CrossRefGoogle Scholar
  7. 7.
    Holzinger, A., Simonic, K. (eds.): Information Quality in e-Health - 7th Conference of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer Society. USAB 2011. LNCS, vol. 7058. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Hund, M., et al.: Visual analytics for concept exploration in subspaces of patient groups. Brain Inf. 3, 1–15 (2016)CrossRefGoogle Scholar
  9. 9.
    Ibrahim, I.A., Albarrak, A.M., Li, X.: Constrained recommendations for query visualizations. Knowl. Inf. Syst. 51(2), 499–529 (2017)CrossRefGoogle Scholar
  10. 10.
    Jagadish, H.V.: Review - explaining differences in multidimensional aggregates. ACM SIGMOD Digital Rev. 1 (1999)Google Scholar
  11. 11.
    Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)CrossRefGoogle Scholar
  12. 12.
    Kandel, S., Parikh, R., Paepcke, A., Hellerstein, J.M., Heer, J.: Profiler: integrated statistical analysis and visualization for data quality assessment. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, pp. 547–554. ACM (2012)Google Scholar
  13. 13.
    Key, A., Howe, B., Perry, D., Aragon, C.R.: VizDeck: self-organizing dashboards for visual analytics. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, 20–24 May 2012, pp. 681–684 (2012)Google Scholar
  14. 14.
    Livny, M., et al.: Devise: integrated querying and visualization of large datasets. In: Proceedings ACM SIGMOD International Conference on Management of Data, SIGMOD 1997, Tucson, Arizona, USA, 13–15 May 1997, pp. 301–312 (1997)Google Scholar
  15. 15.
    Mackinlay, J.D., Hanrahan, P., Stolte, C.: Show me: automatic presentation for visual analysis. IEEE Trans. Vis. Comput. Graph. 13(6), 1137–1144 (2007)CrossRefGoogle Scholar
  16. 16.
    Sarawagi, S.: User-adaptive exploration of multidimensional data. In: Proceedings of 26th International Conference on Very Large Data Bases, VLDB 2000, Cairo, Egypt, 10–14 September 2000, pp. 307–316 (2000)Google Scholar
  17. 17.
    Sathe, G., Sarawagi, S.: Intelligent rollups in multidimensional OLAP data. In: Proceedings of 27th International Conference on Very Large Data Bases, VLDB 2001, Roma, Italy, 11–14 September 2001, pp. 531–540 (2001)Google Scholar
  18. 18.
    Vartak, M., Madden, S., Parameswaran, A., Polyzotis, N.: SEEDB: towards automatic query result visualizations. Technical report, data-people. cs. illinois. edu/seedb-tr.pdfGoogle Scholar
  19. 19.
    Vartak, M., Madden, S., Parameswaran, A.G., Polyzotis, N.: SEEDB: automatically generating query visualizations. PVLDB 7(13), 1581–1584 (2014)Google Scholar
  20. 20.
    Wong, B.L.W., Chen, R., Kodagoda, N., Rooney, C., Xu, K.: INVISQUE: intuitive information exploration through interactive visualization. In: Proceedings of the International Conference on Human Factors in Computing Systems, CHI 2011, Extended Abstracts Volume, 7–12 May 2011, Vancouver, BC, Canada, pp. 311–316 (2011). http://doi.acm.org/10.1145/1979742.1979720

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ibrahim A. Ibrahim
    • 1
    • 2
    Email author
  • Abdulqader M. Almars
    • 1
  • Suresh Pokharel
    • 1
  • Xin Zhao
    • 1
  • Xue Li
    • 1
  1. 1.The University of QueenslandBrisbaneAustralia
  2. 2.Minia UniversityMinyaEgypt

Personalised recommendations