Advertisement

An Improved PBIL Algorithm for Optimal Coalition Structure Generation of Smart Grids

  • Sean Hsin-Shyuan Lee
  • Jeremiah D. DengEmail author
  • Martin K. Purvis
  • Maryam Purvis
  • Lizhi Peng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11154)

Abstract

Coalition structure generation in multi-agent systems has long been a challenging problem because of its NP-hardness in computational complexity. In this paper, we propose a stochastic optimization approach that employs a modified population based incremental learning algorithm and a customized genotype encoding scheme to find the optimal coalition structure for smart grids with renewable energy sources. Empirical results show that the proposed approach gives competitive performance compared with existing solutions such as genetic algorithm and dynamic programming.

Keywords

Coalition structure generation Smart grids Optimization Dynamic programming Population-based incremental learning 

References

  1. 1.
    Baluja, S.: Population-based incremental learning. a method for integrating genetic search based function optimization and competitive learning. Technical report No. CMU-CS-94-163, Carnegie-Mellon University, Department of Computer Science (1994)Google Scholar
  2. 2.
    Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algorithm. In: Machine Learning: Proceedings of the Twelfth International Conference, pp. 38–46 (1995)Google Scholar
  3. 3.
    Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational aspects of cooperative game theory. Synth. Lect. Artif. Intell. Mach. Learn. 5(6), 1–168 (2011)CrossRefGoogle Scholar
  5. 5.
    Changder, N., Dutta, A., Ghose, A.K.: Coalition structure formation using anytime dynamic programming. In: Baldoni, M., Chopra, A.K., Son, T.C., Hirayama, K., Torroni, P. (eds.) PRIMA 2016. LNCS (LNAI), vol. 9862, pp. 295–309. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44832-9_18CrossRefGoogle Scholar
  6. 6.
    Lee, S.H.S., Deng, J.D., Peng, L., Purvis, M.K., Purvis, M.: Top-k merit weighting PBIL for optimal coalition structure generation of smart grids. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) International Conference on Neural Information Processing, pp. 171–181. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70093-9_18CrossRefGoogle Scholar
  7. 7.
    Michalak, T., Rahwan, T., Elkind, E., Wooldridge, M., Jennings, N.R.: A hybrid exact algorithm for complete set partitioning. Artif. Intell. 230(C), 14–50 (2016). 10.1016/j.artint.2015.09.006MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mohamed, M.A., Eltamaly, A.M., Alolah, A.I.: PSO-based smart grid application for sizing and optimization of hybrid renewable energy systems. PLoS ONE 11(8), e0159702 (2016)CrossRefGoogle Scholar
  9. 9.
    Rahwan, T., Michalak, T.P., Wooldridge, M., Jennings, N.R.: Coalition structure generation: a survey. Artif. Intell. 229, 139–174 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohmé, F.: Coalition structure generation with worst case guarantees. Artif. Intell. 111(1–2), 209–238 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Shoham, Y., Leyton-Brown, K.: Multiagent sYstems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  12. 12.
    Wilf, H.S.: Generatingfunctionology, 2nd edn. Academic Press, Cambridge (1994)zbMATHGoogle Scholar
  13. 13.
    Yeh, D.Y.: A dynamic programming approach to the complete set partitioning problem. BIT Numer. Math. 26(4), 467–474 (1986)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sean Hsin-Shyuan Lee
    • 1
  • Jeremiah D. Deng
    • 1
    Email author
  • Martin K. Purvis
    • 1
  • Maryam Purvis
    • 1
  • Lizhi Peng
    • 2
  1. 1.Department of Information ScienceUniversity of OtagoDunedinNew Zealand
  2. 2.Shandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinanChina

Personalised recommendations