Advertisement

Unsupervised Domain Adaptation Dictionary Learning for Visual Recognition

  • Zhun ZhongEmail author
  • Zongmin Li
  • Runlin Li
  • Xiaoxia Sun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11154)

Abstract

Over the last years, dictionary learning method has been extensively applied to deal with various computer vision recognition applications, and produced state-of-the-art results. However, when the data instances of a target domain have a different distribution than that of a source domain, the dictionary learning method may fail to perform well. In this paper, we address the cross-domain visual recognition problem and propose a simple but effective unsupervised domain adaptation approach, where labeled data are only from source domain. In order to bring the original data in source and target domain into the same distribution, the proposed method forcing nearest coupled data between source and target domain to have identical sparse representations while jointly learning dictionaries for each domain, where the learned dictionaries can reconstruct original data in source and target domain respectively. So that sparse representations of original data can be used to perform visual recognition tasks. We demonstrate the effectiveness of our approach on standard datasets. Our method performs on par or better than competitive state-of-the-art methods.

References

  1. 1.
    Zheng, L., Wang, S., Liu, Z., Tian, Q.: Fast image retrieval: query pruning and early termination. IEEE Trans. Multimed. 17(5), 648–659 (2015)CrossRefGoogle Scholar
  2. 2.
    Zheng, L., Wang, S., Tian, Q.: Coupled binary embedding for large-scale image retrieval. IEEE Trans. Image Process. 23(8), 3368–3380 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kuang, Z., Li, Z., Jiang, X., Liu, Y., Li, H.: Retrieval of non-rigid 3D shapes from multiple aspects. Comput.-Aided Des. 58, 13–23 (2015)CrossRefGoogle Scholar
  4. 4.
    Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. Int. J. Comput. Vis. 105(3), 222–245 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  6. 6.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  7. 7.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  8. 8.
    Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. arXiv preprint arXiv:1708.04896 (2017)
  9. 9.
    Wu, L., Wang, Y., Pan, S.: Exploiting attribute correlations: a novel trace lasso-based weakly supervised dictionary learning method. IEEE Trans. Cybern. 47(12), 4497–4508 (2017)CrossRefGoogle Scholar
  10. 10.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)Google Scholar
  11. 11.
    Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (2015)Google Scholar
  12. 12.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  13. 13.
    Zhong, Z., Lei, M., Cao, D., Fan, J., Li, S.: Class-specific object proposals re-ranking for object detection in automatic driving. Neurocomputing 242, 187–194 (2017)CrossRefGoogle Scholar
  14. 14.
    Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-reciprocal encoding. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3652–3661. IEEE (2017)Google Scholar
  15. 15.
    Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for person re-identification. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2018)Google Scholar
  16. 16.
    Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and future. arXiv preprint arXiv:1610.02984 (2016)
  17. 17.
    Wu, L., Wang, Y., Li, X., Gao, J.: What-and-where to match: deep spatially multiplicative integration networks for person re-identification. Pattern Recognit. 76, 727–738 (2018)CrossRefGoogle Scholar
  18. 18.
    Wu, L., Wang, Y., Gao, J., Li, X.: Deep adaptive feature embedding with local sample distributions for person re-identification. Pattern Recognit. 73, 275–288 (2018)CrossRefGoogle Scholar
  19. 19.
    Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: an unsupervised approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 999–1006. IEEE (2011)Google Scholar
  20. 20.
    Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2066–2073. IEEE (2012)Google Scholar
  21. 21.
    Li, A., Shan, S., Chen, X., Gao, W.: Maximizing intra-individual correlations for face recognition across pose differences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2009)Google Scholar
  22. 22.
    Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)CrossRefGoogle Scholar
  23. 23.
    Huang, K., Aviyente, S.: Sparse representation for signal classification. In: Advances in neural information processing systems, pp. 609–616 (2006)Google Scholar
  24. 24.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRefGoogle Scholar
  25. 25.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by V1? Vis. Res. 37(23), 3311–3325 (1997)CrossRefGoogle Scholar
  27. 27.
    Engan, K., Aase, S.O., Husoy, J.H..: Method of optimal directions for frame design. In: Acoustics, Speech, and Signal Processing, vol. 5, pp. 2443–2446. IEEE (1999)Google Scholar
  28. 28.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  29. 29.
    Jia, Y., Salzmann, M., Darrell, T.: Factorized latent spaces with structured sparsity. In: Advances in Neural Information Processing Systems, pp. 982–990 (2010)Google Scholar
  30. 30.
    Qiu, Q., Patel, V.M., Turaga, P., Chellappa, R.: Domain adaptive dictionary learning. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 631–645. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33765-9_45CrossRefGoogle Scholar
  31. 31.
    Zheng, J., Jiang, Z., Phillips, P.J., Chellappa, R.: Cross-view action recognition via a transferable dictionary pair. In: BMVC (2012)Google Scholar
  32. 32.
    Shekhar, S., Patel, V.M., Nguyen, H.V., Chellappa, R.: Generalized domain-adaptive dictionaries. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 361–368. IEEE (2013)Google Scholar
  33. 33.
    Ni, J., Qiu, Q., Chellappa, R.: Subspace interpolation via dictionary learning for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 692–699. IEEE (2013)Google Scholar
  34. 34.
    Huang, D.A., Wang, Y.C.F.: Coupled dictionary and feature space learning with applications to cross-domain image synthesis and recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2496–2503. IEEE (2013)Google Scholar
  35. 35.
    Zhu, F., Shao, L.: Enhancing action recognition by cross-domain dictionary learning. In: BMVC (2013)Google Scholar
  36. 36.
    Zhu, F., Shao, L.: Weakly-supervised cross-domain dictionary learning for visual recognition. Int. J. Comput. Vis. 109(1–2), 42–59 (2014)CrossRefGoogle Scholar
  37. 37.
    Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)Google Scholar
  38. 38.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  39. 39.
    Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15561-1_16CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Zhun Zhong
    • 1
    Email author
  • Zongmin Li
    • 1
  • Runlin Li
    • 1
  • Xiaoxia Sun
    • 1
  1. 1.College of Computer and Communication EngineeringChina University of PetroleumQingdaoChina

Personalised recommendations