Advertisement

Noble-Metal-Free Nanoelectrocatalysts for Hydrogen Evolution Reaction

  • Natarajan ThiyagarajanEmail author
  • Nithila A. Joseph
  • Manavalan Gopinathan
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 24)

Abstract

The rapidly progressing global warming due to large carbon emission originating from increased consumption of fossil fuels has become a leading cause of concern. To slow down global warming and to shift toward a sustainable path, the development of alternative renewable energy sources is inevitable. Hydrogen is one such source which is considered to be green. However, current hydrogen generation methods are both energy intensive and generate CO2 as by-product, and thus, developing efficient green methods is necessary. The generation of hydrogen through water splitting is a straightforward method. The evolution of several less expensive non-noble electrocatalysts in the recent past has fueled research efforts related to electrocatalytic hydrogen evolution. Some of these non-noble catalysts have exhibited excellent electrochemical activity and stability, and their performances have rivaled the bench mark catalyst “platinum.” Unlike Pt, whose prohibitive cost prevents large-scale usage, these catalysts can be produced in an affordable manner to be used in mass scale. This chapter reviews some of the basic catalyst evaluation parameters along with interesting results being achieved using catalysts composed of metal dichalcogenides, carbide, nitrides, and phosphides.

Keywords

Hydrogen evolution Electrochemical Non-noble metals Dichalcogenides Carbides Nitrides Phosphides Water splitting 

References

  1. Ambrosi A, Sofer Z, Pumera M (2015) 2H→ 1T phase transition and hydrogen evolution activity of MoS 2, MoSe 2, WS 2 and WSe 2 strongly depends on the MX 2 composition. Chem Commun 51(40):8450–8453CrossRefGoogle Scholar
  2. Bai Y, Zhang H, Li X, Liu L, Xu H, Qiu H, Wang Y (2015) Novel peapod-like Ni 2 P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage. Nanoscale 7(4):1446–1453CrossRefGoogle Scholar
  3. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New YorkGoogle Scholar
  4. Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal 4(11):3957–3971CrossRefGoogle Scholar
  5. Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I (2009) Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 140:219–231CrossRefGoogle Scholar
  6. Brorson M, Carlsson A, Topsøe H (2007) The morphology of MoS2, WS2, Co–Mo–S, Ni–Mo–S and Ni–W–S nanoclusters in hydrodesulfurization catalysts revealed by HAADF-STEM. Catal Today 123(1–4):31–36CrossRefGoogle Scholar
  7. Brown D, Mahmood M, Turner A, Hall S, Fogarty P (1982) Low overvoltage electrocatalysts for hydrogen evolving electrodes. Int J Hydrog Energy 7(5):405–410CrossRefGoogle Scholar
  8. Brown D, Mahmood M, Man M, Turner A (1984) Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions. Electrochim Acta 29(11):1551–1556CrossRefGoogle Scholar
  9. Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ, Popczun EJ, Gordon TR, Lewis NS, Schaak RE (2014) Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 8(11):11101–11107CrossRefGoogle Scholar
  10. Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE (2015) Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem Mater 27(10):3769–3774CrossRefGoogle Scholar
  11. Cammack R, Frey M, Robson R (2015) Hydrogen as a fuel: learning from nature. CRC Press, Boca RatonGoogle Scholar
  12. Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR (2012) Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew Chem Int Ed 51(25):6131–6135CrossRefGoogle Scholar
  13. Chen W-F, Wang C-H, Sasaki K, Marinkovic N, Xu W, Muckerman J, Zhu Y, Adzic R (2013a) Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ Sci 6(3):943–951CrossRefGoogle Scholar
  14. Chen W, Santos EJ, Zhu W, Kaxiras E, Zhang Z (2013b) Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. Nano Lett 13(2):509–514CrossRefGoogle Scholar
  15. Chen WF, Schneider JM, Sasaki K, Wang CH, Schneider J, Iyer S, Iyer S, Zhu Y, Muckerman JT, Fujita E (2014) Tungsten carbide–nitride on graphene nanoplatelets as a durable hydrogen evolution electrocatalyst. ChemSusChem 7(9):2414–2418CrossRefGoogle Scholar
  16. Chen Y, Yang K, Jiang B, Li J, Zeng M, Fu L (2017) Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. J Mater Chem A 5(18):8187–8208CrossRefGoogle Scholar
  17. Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y, Dai H (2014) Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed 53(30):7860–7863CrossRefGoogle Scholar
  18. Choi CL, Feng J, Li Y, Wu J, Zak A, Tenne R, Dai H (2013) WS 2 nanoflakes from nanotubes for electrocatalysis. Nano Res 6(12):921–928CrossRefGoogle Scholar
  19. Chou SS, Sai N, Lu P, Coker EN, Liu S, Artyushkova K, Luk TS, Kaehr B, Brinker CJ (2015) Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat Commun 6:8311CrossRefGoogle Scholar
  20. Chung DY, Han JW, Lim D-H, Jo J-H, Yoo SJ, Lee H, Sung Y-E (2015) Structure dependent active sites of Ni x S y as electrocatalysts for hydrogen evolution reaction. Nanoscale 7(12):5157–5163CrossRefGoogle Scholar
  21. Chung Y-H, Gupta K, Jang J-H, Park HS, Jang I, Jang JH, Lee Y-K, Lee S-C, Yoo SJ (2016) Rationalization of electrocatalysis of nickel phosphide nanowires for efficient hydrogen production. Nano Energy 26:496–503CrossRefGoogle Scholar
  22. Damien D, Anil A, Chatterjee D, Shaijumon M (2017) Direct deposition of MoSe 2 nanocrystals onto conducting substrates: towards ultra-efficient electrocatalysts for hydrogen evolution. J Mater Chem A 5(26):13364–13372CrossRefGoogle Scholar
  23. Delidovich I, Hausoul PJC, Deng L, Pfutzenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116(3):1540–1599.  https://doi.org/10.1021/acs.chemrev.5b00354 CrossRefGoogle Scholar
  24. Deng S, Zhong Y, Zeng Y, Wang Y, Yao Z, Yang F, Lin S, Wang X, Lu X, Xia X (2017) Directional construction of vertical nitrogen-doped 1T-2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Adv Mater 29(21).  https://doi.org/10.1002/adma.201700748 CrossRefGoogle Scholar
  25. Di Giovanni C, Wang W-A, Nowak S, Grenèche J-M, Hln L, Mouton L, Giraud M, Cd T (2014) Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water. ACS Catal 4(2):681–687CrossRefGoogle Scholar
  26. Du H, Liu Q, Cheng N, Asiri AM, Sun X, Li CM (2014) Template-assisted synthesis of CoP nanotubes to efficiently catalyze hydrogen-evolving reaction. J Mater Chem A 2(36):14812–14816CrossRefGoogle Scholar
  27. Du HF, Gu S, Liu RW, Li CM (2015) Tungsten diphosphide nanorods as an efficient catalyst for electrochemical hydrogen evolution. J Power Sources 278:540–545.  https://doi.org/10.1016/j.jpowsour.2014.12.095 CrossRefGoogle Scholar
  28. Faber MS, Dziedzic R, Lukowski MA, Kaiser NS, Ding Q, Jin S (2014) High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Am Chem Soc 136(28):10053–10061.  https://doi.org/10.1021/ja504099w CrossRefGoogle Scholar
  29. Fan X, Zhou H, Guo X (2015) WC nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Nano 9(5):5125–5134CrossRefGoogle Scholar
  30. Feng LG, Vrubel H, Bensimon M, Hu XL (2014) Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Phys Chem Chem Phys 16(13):5917–5921.  https://doi.org/10.1039/c4cp00482e CrossRefGoogle Scholar
  31. Feng L-L, Yu G, Wu Y, Li G-D, Li H, Sun Y, Asefa T, Chen W, Zou X (2015) High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc 137(44):14023–14026CrossRefGoogle Scholar
  32. Fletcher S (2009) Tafel slopes from first principles. J Solid State Electrochem 13(4):537–549CrossRefGoogle Scholar
  33. Frey M (2002) Hydrogenases: hydrogen-activating enzymes. Chembiochem 3(2–3):153–160CrossRefGoogle Scholar
  34. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5(12):987CrossRefGoogle Scholar
  35. Gerischer H (1958) Mechanismus der elektrolytischen Wasserstoffabscheidung und Adsorptionsenergie von atomarem Wasserstoff. Bull Soc Chim Belg 67(7–8):506–527Google Scholar
  36. Gholamvand Z, McAteer D, Backes C, McEvoy N, Harvey A, Berner NC, Hanlon D, Bradley C, Godwin I, Rovetta A (2016) Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe 2 to be the most effective hydrogen evolution catalyst. Nanoscale 8(10):5737–5749CrossRefGoogle Scholar
  37. Gołasa K, Grzeszczyk M, Bożek R, Leszczyński P, Wysmołek A, Potemski M, Babiński A (2014) Resonant Raman scattering in MoS2—from bulk to monolayer. Solid State Commun 197:53–56CrossRefGoogle Scholar
  38. Gong M, Wang D-Y, Chen C-C, Hwang B-J, Dai H (2016) A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res 9(1):28–46CrossRefGoogle Scholar
  39. Gopalakrishnan D, Damien D, Shaijumon MM (2014) MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 8(5):5297–5303CrossRefGoogle Scholar
  40. Gupta S, Patel N, Miotello A, Kothari DC (2015) Cobalt-boride: an efficient and robust electrocatalyst for hydrogen evolution reaction. J Power Sources 279:620–625.  https://doi.org/10.1016/j.jpowsour.2015.01.009 CrossRefGoogle Scholar
  41. Han Q, Liu K, Chen J, Wei X (2003) A study on the electrodeposited Ni–S alloys as hydrogen evolution reaction cathodes. Int J Hydrog Energy 28(11):1207–1212CrossRefGoogle Scholar
  42. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309CrossRefGoogle Scholar
  43. Huang Z, Chen Z, Chen Z, Lv C, Humphrey MG, Zhang C (2014a) Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 9:373–382CrossRefGoogle Scholar
  44. Huang Z, Chen Z, Chen Z, Lv C, Meng H, Zhang C (2014b) Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8(8):8121–8129CrossRefGoogle Scholar
  45. Huang Y, Lu H, Gu H, Fu J, Mo S, Wei C, Miao Y-E, Liu T (2015) A CNT@ MoSe 2 hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale 7(44):18595–18602CrossRefGoogle Scholar
  46. Huang Y, Cui F, Zhao Y, Lian J, Bao J, Liu T, Li H (2018) 3D hierarchical CMF/MoSe 2 composite foam as highly efficient electrocatalyst for hydrogen evolution. Electrochim Acta 263:94–101CrossRefGoogle Scholar
  47. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834):100–102CrossRefGoogle Scholar
  48. Jian C, Cai Q, Hong W, Li J, Liu W (2018) Edge-riched MoSe2/MoO2 hybrid electrocatalyst for efficient hydrogen evolution reaction. Small 14(13):e1703798CrossRefGoogle Scholar
  49. Jiang P, Liu Q, Ge C, Cui W, Pu Z, Asiri AM, Sun X (2014) CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. J Mater Chem A 2(35):14634–14640CrossRefGoogle Scholar
  50. Karunadasa HI, Montalvo E, Sun Y, Majda M, Long JR, Chang CJ (2012) A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335(6069):698–702CrossRefGoogle Scholar
  51. Kibsgaard J, Jaramillo TF, Besenbacher F (2014) Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo 3 S 13] 2− clusters. Nat Chem 6(3):248CrossRefGoogle Scholar
  52. Kibsgaard J, Tsai C, Chan K, Benck JD, Nørskov JK, Abild-Pedersen F, Jaramillo TF (2015) Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ Sci 8(10):3022–3029CrossRefGoogle Scholar
  53. Kong D, Cha JJ, Wang H, Lee HR, Cui Y (2013a) First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci 6(12):3553–3558CrossRefGoogle Scholar
  54. Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y (2013b) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13(3):1341–1347CrossRefGoogle Scholar
  55. Kong DS, Wang HT, Lu ZY, Cui Y (2014) CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J Am Chem Soc 136(13):4897–4900.  https://doi.org/10.1021/ja501497n CrossRefGoogle Scholar
  56. Lauritsen J, Bollinger M, Lægsgaard E, Jacobsen KW, Nørskov JK, Clausen B, Topsøe H, Besenbacher F (2004) Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J Catal 221(2):510–522CrossRefGoogle Scholar
  57. Lauritsen JV, Kibsgaard J, Olesen GH, Moses PG, Hinnemann B, Helveg S, Nørskov JK, Clausen BS, Topsøe H, Lægsgaard E (2007) Location and coordination of promoter atoms in Co-and Ni-promoted MoS2-based hydrotreating catalysts. J Catal 249(2):220–233CrossRefGoogle Scholar
  58. Laursen AB, Man IC, Trinhammer OL, Rossmeisl J, Dahl S (2011) The Sabatier principle illustrated by catalytic H2O2 decomposition on metal surfaces. J Chem Educ 88(12):1711–1715CrossRefGoogle Scholar
  59. Laursen A, Patraju K, Whitaker M, Retuerto M, Sarkar T, Yao N, Ramanujachary K, Greenblatt M, Dismukes G (2015) Nanocrystalline Ni 5 P 4: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ Sci 8(3):1027–1034CrossRefGoogle Scholar
  60. Layman KA, Bussell ME (2004) Infrared spectroscopic investigation of thiophene adsorption on silica-supported nickel phosphide catalysts. J Phys Chem B 108(40):15791–15802CrossRefGoogle Scholar
  61. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299CrossRefGoogle Scholar
  62. Li Q, Cui W, Tian J, Xing Z, Liu Q, Xing W, Asiri AM, Sun X (2015a) N-doped carbon-coated tungsten oxynitride nanowire arrays for highly efficient electrochemical hydrogen evolution. ChemSusChem 8(15):2487–2491.  https://doi.org/10.1002/cssc.201500398 CrossRefGoogle Scholar
  63. Li YH, Liu PF, Pan LF, Wang HF, Yang ZZ, Zheng LR, Hu P, Zhao HJ, Gu L, Yang HG (2015b) Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat Commun 6:8064CrossRefGoogle Scholar
  64. Li H, Tsai C, Koh AL, Cai L, Contryman AW, Fragapane AH, Zhao J, Han HS, Manoharan HC, Abild-Pedersen F (2016) Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater 15(1):48CrossRefGoogle Scholar
  65. Liang Y, Liu Q, Asiri AM, Sun X, Luo Y (2014) Self-supported FeP nanorod arrays: a cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catal 4(11):4065–4069CrossRefGoogle Scholar
  66. Liu M, Li J (2016) Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl Mater Interfaces 8(3):2158–2165CrossRefGoogle Scholar
  67. Liu P, Rodriguez JA (2005) Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: the importance of ensemble effect. J Am Chem Soc 127(42):14871–14878CrossRefGoogle Scholar
  68. Liu Q, Pu Z, Asiri AM, Sun X (2014a) Nitrogen-doped carbon nanotube supported iron phosphide nanocomposites for highly active electrocatalysis of the hydrogen evolution reaction. Electrochim Acta 149:324–329CrossRefGoogle Scholar
  69. Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X (2014b) Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew Chem 126(26):6828–6832CrossRefGoogle Scholar
  70. Liu R, Gu S, Du H, Li CM (2014c) Controlled synthesis of FeP nanorod arrays as highly efficient hydrogen evolution cathode. J Mater Chem A 2(41):17263–17267CrossRefGoogle Scholar
  71. Liu Y, Ren L, Zhang Z, Qi X, Li H, Zhong J (2016) 3D binder-free MoSe 2 nanosheets/carbon cloth electrodes for efficient and stable hydrogen evolution prepared by simple electrophoresis deposition strategy. Sci Rep-Uk 6:22516CrossRefGoogle Scholar
  72. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10277CrossRefGoogle Scholar
  73. Lv CC, Peng Z, Zhao YX, Huang ZP, Zhang C (2016) The hierarchical nanowires array of iron phosphide integrated on a carbon fiber paper as an effective electrocatalyst for hydrogen generation. J Mater Chem A 4(4):1454–1460.  https://doi.org/10.1039/c5ta08715e CrossRefGoogle Scholar
  74. Ma L, Ting LRL, Molinari V, Giordano C, Yeo BS (2015a) Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J Mater Chem A 3(16):8361–8368CrossRefGoogle Scholar
  75. Ma RG, Zhou Y, Chen YF, Li PX, Liu Q, Wang JC (2015b) Ultrafine molybdenum carbide nanoparticles composited with carbon as a highly active hydrogen-evolution electrocatalyst. Angew Chem Int Ed 54(49):14723–14727.  https://doi.org/10.1002/anie.201506727 CrossRefGoogle Scholar
  76. Mao S, Wen Z, Ci S, Guo X, Ostrikov KK, Chen J (2015) Perpendicularly oriented MoSe2/graphene nanosheets as advanced electrocatalysts for hydrogen evolution. Small 11(4):414–419CrossRefGoogle Scholar
  77. Marković N, Grgur B, Ross P (1997) Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J Phys Chem B 101(27):5405–5413CrossRefGoogle Scholar
  78. Markovića NM, Sarraf ST, Gasteiger HA, Ross PN (1996) Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J Chem Soc, Faraday Trans 92(20):3719–3725CrossRefGoogle Scholar
  79. Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z, Somsen C, Muhler M, Schuhmann W (2016) Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Adv Energy Mater 6(6):1–10CrossRefGoogle Scholar
  80. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BF, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242CrossRefGoogle Scholar
  81. McEnaney JM, Crompton JC, Callejas JF, Popczun EJ, Read CG, Lewis NS, Schaak RE (2014) Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. Chem Commun 50(75):11026–11028CrossRefGoogle Scholar
  82. Medford AJ, Vojvodic A, Hummelshøj JS, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov JK (2015) From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal 328:36–42CrossRefGoogle Scholar
  83. Merki D, Hu X (2011) Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ Sci 4(10):3878–3888CrossRefGoogle Scholar
  84. Merki D, Fierro S, Vrubel H, Hu X (2011) Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci 2(7):1262–1267CrossRefGoogle Scholar
  85. Min S, Lu G (2012) Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets—the role of graphene. J Phys Chem C 116(48):25415–25424CrossRefGoogle Scholar
  86. Nocera DG (2012) The artificial leaf. Acc Chem Res 45(5):767–776CrossRefGoogle Scholar
  87. Nørskov JK, Bligaard T, Logadottir A, Kitchin J, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23–J26CrossRefGoogle Scholar
  88. Oyama ST (2003) Novel catalysts for advanced hydroprocessing: transition metal phosphides. J Catal 216(1–2):343–352CrossRefGoogle Scholar
  89. Park H, Encinas A, Scheifers JP, Zhang Y, Fokwa BPT (2017) Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed 56(20):5575–5578.  https://doi.org/10.1002/anie.201611756 CrossRefGoogle Scholar
  90. Parsons R (1958) The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 54:1053–1063CrossRefGoogle Scholar
  91. Pintado S, Goberna-Ferrón S, Escudero-Adán EC, Galán-Mascarós JR (2013) Fast and persistent electrocatalytic water oxidation by Co–Fe Prussian blue coordination polymers. J Am Chem Soc 135(36):13270–13273CrossRefGoogle Scholar
  92. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135(25):9267–9270CrossRefGoogle Scholar
  93. Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem 126(21):5531–5534CrossRefGoogle Scholar
  94. Pu Z, Liu Q, Asiri AM, Sun X (2014a) Tungsten phosphide nanorod arrays directly grown on carbon cloth: a highly efficient and stable hydrogen evolution cathode at all pH values. ACS Appl Mater Interfaces 6(24):21874–21879CrossRefGoogle Scholar
  95. Pu Z, Liu Q, Jiang P, Asiri AM, Obaid AY, Sun X (2014b) CoP nanosheet arrays supported on a Ti plate: an efficient cathode for electrochemical hydrogen evolution. Chem Mater 26(15):4326–4329CrossRefGoogle Scholar
  96. Pu Z, Liu Q, Tang C, Asiri AM, Sun X (2014c) Ni 2 P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 6(19):11031–11034CrossRefGoogle Scholar
  97. Pu Z, Amiinu IS, Wang M, Yang Y, Mu S (2016) Semimetallic MoP 2: an active and stable hydrogen evolution electrocatalyst over the whole pH range. Nanoscale 8(16):8500–8504CrossRefGoogle Scholar
  98. Qu B, Li CY, Zhu CL, Wang S, Zhang XT, Chen YJ (2016) Growth of MoSe2 nanosheets with small size and expanded spaces of (002) plane on the surfaces of porous N-doped carbon nanotubes for hydrogen production. Nanoscale 8(38):16886–16893.  https://doi.org/10.1039/c6nr04619c CrossRefGoogle Scholar
  99. Raj IA, Vasu K (1990) Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem 20(1):32–38CrossRefGoogle Scholar
  100. Saadi FH, Carim AI, Verlage E, Hemminger JC, Lewis NS, Soriaga MP (2014) CoP as an acid-stable active electrocatalyst for the hydrogen-evolution reaction: electrochemical synthesis, interfacial characterization and performance evaluation. J Phys Chem C 118(50):29294–29300CrossRefGoogle Scholar
  101. Santos E, Quaino P, Schmickler W (2012) Theory of electrocatalysis: hydrogen evolution and more. Phys Chem Chem Phys 14(32):11224–11233CrossRefGoogle Scholar
  102. Sawhill SJ, Phillips DC, Bussell ME (2003) Thiophene hydrodesulfurization over supported nickel phosphide catalysts. J Catal 215(2):208–219CrossRefGoogle Scholar
  103. Seo B, Jeong HY, Hong SY, Zak A, Joo SH (2015) Impact of a conductive oxide core in tungsten sulfide-based nanostructures on the hydrogen evolution reaction. Chem Commun 51(39):8334–8337CrossRefGoogle Scholar
  104. Shen Y, Li L, Xi JY, Qiu XP (2016a) A facile approach to fabricate free-standing hydrogen evolution electrodes: riveting tungsten carbide nanocrystals to graphite felt fabrics by carbon nanosheets. J Mater Chem A 4(16):5817–5822.  https://doi.org/10.1039/c6ta01236a CrossRefGoogle Scholar
  105. Shen Y, Ren X, Qi X, Zhou J, Huang Z, Zhong J (2016b) MoS2 nanosheet loaded with TiO2 nanoparticles: an efficient electrocatalyst for hydrogen evolution reaction. J Electrochem Soc 163(13):H1087–H1090CrossRefGoogle Scholar
  106. Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U (2008) The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321(5888):572–575CrossRefGoogle Scholar
  107. Shin S, Jin Z, Kwon DH, Bose R, Min Y-S (2015) High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition. Langmuir 31(3):1196–1202CrossRefGoogle Scholar
  108. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep-Uk 5:13801.  https://doi.org/10.1038/srep13801 CrossRefGoogle Scholar
  109. Shu H, Zhou D, Li F, Cao D, Chen X (2017) Defect engineering in MoSe2 for the hydrogen evolution reaction: from point defects to edges. ACS Appl Mater Interfaces 9(49):42688–42698CrossRefGoogle Scholar
  110. Sobczynski A, Yildiz A, Bard AJ, Campion A, Fox MA, Mallouk T, Webber SE, White JM (1988) Tungsten disulfide: a novel hydrogen evolution catalyst for water decomposition. J Phys Chem 92(8):2311–2315CrossRefGoogle Scholar
  111. Sobczynski A, Bard A, Campion A, Fox M, Mallouk T, Webber S, White J (1989) Catalytic hydrogen evolution properties of nickel-doped tungsten disulfide. J Phys Chem 93(1):401–403CrossRefGoogle Scholar
  112. Subbaraman R, Tripkovic D, Strmcnik D, Chang K-C, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM (2011) Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni (OH) 2-Pt interfaces. Science 334(6060):1256–1260CrossRefGoogle Scholar
  113. Tan SM, Pumera M (2016) Bottom-up electrosynthesis of highly active tungsten sulfide (WS3–x) films for hydrogen evolution. ACS Appl Mater Interfaces 8(6):3948–3957CrossRefGoogle Scholar
  114. Tian J, Liu Q, Asiri AM, Sun X (2014a) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136(21):7587–7590CrossRefGoogle Scholar
  115. Tian J, Liu Q, Liang Y, Xing Z, Asiri AM, Sun X (2014b) FeP nanoparticles film grown on carbon cloth: an ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions. ACS Appl Mater Interfaces 6(23):20579–20584CrossRefGoogle Scholar
  116. Tian L, Murowchick J, Chen X (2017) Improving the activity of Co x P nanoparticles for the electrochemical hydrogen evolution by hydrogenation. Sustain Energy Fuel 1(1):62–68CrossRefGoogle Scholar
  117. Topsøe H, Clausen BS, Massoth FE (1996) Hydrotreating catalysis. In: Catalysis. Springer, New York, pp 1–269Google Scholar
  118. Trasatti S (1972) Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem Interfacial Electrochem 39(1):163–184CrossRefGoogle Scholar
  119. Tsai C, Chan K, Abild-Pedersen F, Nørskov JK (2014) Active edge sites in MoSe 2 and WSe 2 catalysts for the hydrogen evolution reaction: a density functional study. Phys Chem Chem Phys 16(26):13156–13164CrossRefGoogle Scholar
  120. Tseung A, Sriskandarajah T, Chan H (1985) A method for the inhibition of sulphide stress corrosion cracking in steel-i. electrochemical aspects. Corros Sci 25(6):383–393CrossRefGoogle Scholar
  121. Turner JA (2004) Sustainable hydrogen production. Science 305(5686):972–974CrossRefGoogle Scholar
  122. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013a) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13(12):6222–6227CrossRefGoogle Scholar
  123. Voiry D, Yamaguchi H, Li J, Silva R, Alves DC, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G (2013b) Enhanced catalytic activity in strained chemically exfoliated WS 2 nanosheets for hydrogen evolution. Nat Mater 12(9):850CrossRefGoogle Scholar
  124. Vrubel H, Hu X (2012) Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem 124(51):12875–12878CrossRefGoogle Scholar
  125. Wang H, Kong D, Johanes P, Cha JJ, Zheng G, Yan K, Liu N, Cui Y (2013a) MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett 13(7):3426–3433CrossRefGoogle Scholar
  126. Wang HT, Lu ZY, Xu SC, Kong DS, Cha JJ, Zheng GY, Hsu PC, Yan K, Bradshaw D, Prinz FB, Cui Y (2013b) Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc Natl Acad Sci USA 110(49):19701–19706.  https://doi.org/10.1073/pnas.1316792110 CrossRefGoogle Scholar
  127. Wang T, Liu L, Zhu Z, Papakonstantinou P, Hu J, Liu H, Li M (2013c) Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ Sci 6(2):625–633CrossRefGoogle Scholar
  128. Wang X, Feng H, Wu Y, Jiao L (2013d) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J Am Chem Soc 135(14):5304–5307CrossRefGoogle Scholar
  129. Wang JM, Yang WR, Liu JQ (2016) CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. J Mater Chem A 4(13):4686–4690.  https://doi.org/10.1039/c6ta00596a CrossRefGoogle Scholar
  130. Wang H, Xie Y, Cao H, Li Y, Li L, Xu Z, Wang X, Xiong N, Pan K (2017) Flower-like nickel phosphide microballs assembled by nanoplates with exposed high-energy (0 0 1) facets: efficient electrocatalyst for the hydrogen evolution reaction. ChemSusChem 10(24):4899–4908CrossRefGoogle Scholar
  131. Wu Z, Fang B, Bonakdarpour A, Sun A, Wilkinson DP, Wang D (2012) WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction. Appl Catal B Environ 125:59–66CrossRefGoogle Scholar
  132. Wu Z, Fang B, Wang Z, Wang C, Liu Z, Liu F, Wang W, Alfantazi A, Wang D, Wilkinson DP (2013) MoS2 nanosheets: a designed structure with high active site density for the hydrogen evolution reaction. ACS Catal 3(9):2101–2107CrossRefGoogle Scholar
  133. Wu T, Pi M, Zhang D, Chen S (2016) Three-dimensional porous structural MoP2 nanoparticles as a novel and superior catalyst for electrochemical hydrogen evolution. J Power Sources 328:551–557CrossRefGoogle Scholar
  134. Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang J-Y, Lim KH, Wang X (2014) Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci 7(8):2624–2629CrossRefGoogle Scholar
  135. Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135(47):17881–17888CrossRefGoogle Scholar
  136. Xing Z, Liu Q, Asiri AM, Sun X (2014) High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catal 5(1):145–149CrossRefGoogle Scholar
  137. Xu Y, Wu R, Zhang J, Shi Y, Zhang B (2013) Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem Commun 49(59):6656–6658CrossRefGoogle Scholar
  138. Xu S, Lei Z, Wu P (2015) Facile preparation of 3D MoS 2/MoSe 2 nanosheet–graphene networks as efficient electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3(31):16337–16347CrossRefGoogle Scholar
  139. Yan Y, Ge X, Liu Z, Wang J-Y, Lee J-M, Wang X (2013) Facile synthesis of low crystalline MoS 2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale 5(17):7768–7771CrossRefGoogle Scholar
  140. Yan Y, Xia B, Xu Z, Wang X (2014) Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal 4(6):1693–1705CrossRefGoogle Scholar
  141. Yan H, Tian C, Wang L, Wu A, Meng M, Zhao L, Fu H (2015) Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed 54(21):6325–6329CrossRefGoogle Scholar
  142. Yan L, Dai P, Wang Y, Gu X, Li L, Cao L, Zhao X (2017) In situ synthesis strategy for hierarchically porous Ni2P polyhedrons from MOFs templates with enhanced electrochemical properties for hydrogen evolution. ACS Appl Mater Interfaces 9(13):11642–11650CrossRefGoogle Scholar
  143. Yang J, Voiry D, Ahn SJ, Kang D, Kim AY, Chhowalla M, Shin HS (2013) Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew Chem Int Ed 52(51):13751–13754CrossRefGoogle Scholar
  144. Yang HC, Zhang YJ, Hu F, Wang QB (2015a) Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett 15(11):7616–7620.  https://doi.org/10.1021/acs.nanolett.5b03446 CrossRefGoogle Scholar
  145. Yang X, Lu A-Y, Zhu Y, Hedhili MN, Min S, Huang K-W, Han Y, Li L-J (2015b) CoP nanosheet assembly grown on carbon cloth: a highly efficient electrocatalyst for hydrogen generation. Nano Energy 15:634–641.  https://doi.org/10.1016/j.nanoen.2015.05.026 CrossRefGoogle Scholar
  146. Yang XL, Lu AY, Zhu Y, Min SX, Hedhili MN, Han Y, Huang KW, Li LJ (2015c) Rugae-like FeP nanocrystal assembly on a carbon cloth: an exceptionally efficient and stable cathode for hydrogen evolution. Nanoscale 7(25):10974–10981.  https://doi.org/10.1039/c5nr02375k CrossRefGoogle Scholar
  147. Yang Y, Fei H, Ruan G, Tour JM (2015d) Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv Mater 27(20):3175–3180CrossRefGoogle Scholar
  148. Yin Y, Zhang Y, Gao T, Yao T, Zhang X, Han J, Wang X, Zhang Z, Xu P, Zhang P (2017) Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv Mater 29(28).  https://doi.org/10.1002/adma.201700311 CrossRefGoogle Scholar
  149. Yu Y, Huang S-Y, Li Y, Steinmann SN, Yang W, Cao L (2014) Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett 14(2):553–558CrossRefGoogle Scholar
  150. Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3(29):14942–14962CrossRefGoogle Scholar
  151. Zeng M, Wang H, Zhao C, Wei J, Qi K, Wang W, Bai X (2016) Nanostructured amorphous nickel boride for high-efficiency electrocatalytic hydrogen evolution over a broad pH range. ChemCatChem 8(4):708–712CrossRefGoogle Scholar
  152. Zeradjanin AR, Grote JP, Polymeros G, Mayrhofer KJ (2016) A critical review on hydrogen evolution electrocatalysis: re-exploring the volcano-relationship. Electroanalysis 28(10):2256–2269CrossRefGoogle Scholar
  153. Zhang Z, Lu B, Hao J, Yang W, Tang J (2014) FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction. Chem Commun 50(78):11554–11557CrossRefGoogle Scholar
  154. Zhang ZY, Li WY, Yuen MF, Ng TW, Tang YB, Lee CS, Chen XF, Zhang WJ (2015) Hierarchical composite structure of few-layers MoS2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction. Nano Energy 18:196–204.  https://doi.org/10.1016/j.nanoen.2015.10.014 CrossRefGoogle Scholar
  155. Zhou D, He L, Zhu W, Hou X, Wang K, Du G, Zheng C, Sun X, Asiri AM (2016a) Interconnected urchin-like cobalt phosphide microspheres film for highly efficient electrochemical hydrogen evolution in both acidic and basic media. J Mater Chem A 4(26):10114–10117CrossRefGoogle Scholar
  156. Zhou HQ, Yu F, Sun JY, He R, Wang YM, Guo CF, Wang F, Lan YC, Ren ZF, Chen S (2016b) Highly active and durable self-standing WS2/graphene hybrid catalysts for the hydrogen evolution reaction. J Mater Chem A 4(24):9472–9476.  https://doi.org/10.1039/c6ta02876d CrossRefGoogle Scholar
  157. Zhou HQ, Yu F, Liu YY, Sun JY, Zhu ZA, He R, Bao JM, Goddard WA, Chen S, Ren ZF (2017) Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide electrocatalysts. Energy Environ Sci 10(6):1487–1492.  https://doi.org/10.1039/c7ee00802c CrossRefGoogle Scholar
  158. Zhu YP, Liu YP, Ren TZ, Yuan ZY (2015) Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv Funct Mater 25(47):7337–7347CrossRefGoogle Scholar
  159. Zhu WX, Tang C, Liu DN, Wang JL, Asiri AM, Sun XP (2016) A self-standing nanoporous MoP2 nanosheet array: an advanced pH-universal catalytic electrode for the hydrogen evolution reaction. J Mater Chem A 4(19):7169–7173.  https://doi.org/10.1039/c6ta01328g CrossRefGoogle Scholar
  160. Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180CrossRefGoogle Scholar
  161. Zou X, Huang X, Goswami A, Silva R, Sathe BR, Mikmeková E, Asefa T (2014) Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew Chem 126(17):4461–4465CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Natarajan Thiyagarajan
    • 1
    Email author
  • Nithila A. Joseph
    • 2
  • Manavalan Gopinathan
    • 1
  1. 1.Department of ChemistryNational Chung Hsing UniversityTaichungTaiwan
  2. 2.Institute of Biomedical SciencesNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations