Advertisement

Tensor Decomposition for Imagined Speech Discrimination in EEG

  • Jesús S. García-Salinas
  • Luis Villaseñor-Pineda
  • Carlos Alberto Reyes-García
  • Alejandro Torres-García
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11289)

Abstract

Most of the researches in Electroencephalogram(EEG)-based Brain-Computer Interfaces (BCI) are focused on the use of motor imagery. As an attempt to improve the control of these interfaces, the use of language instead of movement has been recently explored, in the form of imagined speech. This work aims for the discrimination of imagined words in electroencephalogram signals. For this purpose, the analysis of multiple variables of the signal and their relation is considered by means of a multivariate data analysis, i.e., Parallel Factor Analysis (PARAFAC). In previous works, this method has demonstrated to be useful for EEG analysis. Nevertheless, to the best of our knowledge, this is the first attempt to analyze imagined speech signals using this approach. In addition, a novel use of the extracted PARAFAC components is proposed in order to improve the discrimination of the imagined words. The obtained results, besides of higher accuracy rates in comparison with related works, showed lower standard deviation among subjects suggesting the effectiveness and robustness of the proposed method. These results encourage the use of multivariate analysis for BCI applications in combination with imagined speech signals.

Keywords

Tensor decomposition Brain Computer Interface Imagined speech Electroencephalogram 

Notes

Acknowledgments

The present work was partially supported by CONACyT (scholarship 487560). Also, the authors thank the support of the Italian Foreign Affairs and Cooperation Ministry, and the International Cooperation for Development Mexican Agency for the project MX14MO06.

References

  1. 1.
    Barzegaran, E., Vildavski, V.Y., Knyazeva, M.G.: Fine structure of posterior alpha rhythm in human EEG: frequency components, their cortical sources, and temporal behavior. Sci. Rep. 7(1), 8249 (2017)CrossRefGoogle Scholar
  2. 2.
    Bro, R.: PARAFAC: tutorial and applications. Chemometr. Intell. Lab. Syst. 38(2), 149–171 (1997)CrossRefGoogle Scholar
  3. 3.
    Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of “eckart-young” decomposition. Psychometrika 35(3), 283–319 (1970)CrossRefGoogle Scholar
  4. 4.
    Cichocki, A.: Tensor decompositions: a new concept in brain data analysis? J. SICE Control Measur. Syst. Integr. Special Issue; Measur. Brain Funct. Bio-Signals 7, 507–517 (2011). 7 (05 2013)Google Scholar
  5. 5.
    Cichocki, A., et al.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis (2015).  https://doi.org/10.1109/MSP.2013.2297439CrossRefGoogle Scholar
  6. 6.
    Cong, F., Phan, A.H., Lyytinen, H., Ristaniemi, T., Cichocki, A.: Classifying healthy children and children with attention deficit through features derived from sparse and nonnegative tensor factorization using event-related potential. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 620–628. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15995-4_77CrossRefGoogle Scholar
  7. 7.
    Dalhoumi, S., Dray, G., Montmain, J.: Knowledge transfer for reducing calibration time in brain-computer interfacing. In: Proceedings - International Conference on Tools with Articial Intelligence, ICTAI (2014)Google Scholar
  8. 8.
    Devarajan, K.: Matrix and Tensor Decompositions, pp. 291–318. Springer, Boston (2011)Google Scholar
  9. 9.
    García-Salinas, J.S., Villaseñor-Pineda, L., Reyes-García, C., Torres-García, A.A.: Selección de parámetros en el enfoque de bolsa de características para clasificación de habla imaginada en electroencefalogramas. Res. Comput. Sci. 140(140), 123–133 (2017)Google Scholar
  10. 10.
    Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multimodal factor analysis. In: UCLA Working Papers Phonetics, vol. 16, no. 10, pp. 1–84 (1970)Google Scholar
  11. 11.
    Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6(1–4), 164–189 (1927).  https://doi.org/10.1002/sapm192761164CrossRefzbMATHGoogle Scholar
  12. 12.
    Ji, H., Li, J., Lu, R., Gu, R., Cao, L., Gong, X.: EEG classification for hybrid brain-computer interface using a tensor based multiclass multimodal analysis scheme. Comput. Intell. neurosci. 2016, 51 (2016)CrossRefGoogle Scholar
  13. 13.
    Lee, H., Kim, Y.D., Cichocki, A., ChoI, S.: Nonnegative tensor factorization for continuous EEG classification. Int. J. Neural Syst. 17(04), 305–317 (2007).  https://doi.org/10.1142/S0129065707001159CrossRefGoogle Scholar
  14. 14.
    Li, J., Zhang, L.: Phase interval value analysis for the motor imagery task in BCI. J. Circ. Syst. Comput. 18(08), 1441–1452 (2009).  https://doi.org/10.1142/S0218126609005861CrossRefGoogle Scholar
  15. 15.
    Li, J., Zhang, L.: Regularized tensor discriminant analysis for single trial EEG classification in BCI. Pattern Recogn. Lett. 31(7), 619–628 (2010).  https://doi.org/10.1016/j.patrec.2009.11.012CrossRefGoogle Scholar
  16. 16.
    Li, J., Zhang, L., Tao, D., Sun, H., Zhao, Q.: A prior neurophysiologic knowledge free tensor-based scheme for single trial EEG classification. IEEE Trans. Neural Syst. Rehabil. Eng. 17(2), 107–115 (2009).  https://doi.org/10.1109/TNSRE.2008.2008394CrossRefGoogle Scholar
  17. 17.
    Lilly, J.M., Olhede, S.C.: Higher-order properties of analytic wavelets. Trans. Sig. Proc. 57(1), 146–160 (2009).  https://doi.org/10.1109/TSP.2008.2007607MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lu, H., Plataniotis, K., Venetsanopoulos, A.: Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data. Machine Learning & Pattern Recognition Series. Chapman & Hall/CRC Press, London/Boca Raton (2013)CrossRefGoogle Scholar
  19. 19.
    Miwakeichi, F., Martínez-Montes, E., Valdés-Sosa, P.A., Nishiyama, N., Mizuhara, H., Yamaguchi, Y.: Decomposing EEG data into space-time-frequency components using parallel factor analysis. NeuroImage 22(3), 1035–1045 (2004).  https://doi.org/10.1016/j.neuroimage.2004.03.039CrossRefGoogle Scholar
  20. 20.
    Pressel Coretto, G.A., Gareis, I.E., Rufiner, H.L.: Open access database of EEG signals recorded during imagined speech. In: Proceedings SPIE, vol. 10160 (2017).  https://doi.org/10.1117/12.2255697
  21. 21.
    Sifuzzaman, M., Islam, M.R., Ali, M.Z.: Application of wavelet transform and its advantages compared to Fourier transform. J. Phys. Sci. 13, 121–134 (2009)Google Scholar
  22. 22.
    Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discriminant analysis and Gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007).  https://doi.org/10.1109/TPAMI.2007.1096CrossRefGoogle Scholar
  23. 23.
    Torres-García, A.A., Reyes-García, C.A., L., L.V.P., Ramirez, J.: Analisis de señales electroencefalograficas para la clasificacion de habla imaginada. Revista mexicana de ingeniería biomedica 34, 23–39 (2013)Google Scholar
  24. 24.
    Torres-García, A.A., Reyes-García, C.A., Villaseñor-Pineda, L., García-Aguilar, G.: Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification. Expert Syst. Appl. 59, 1–12 (2016).  https://doi.org/10.1016/j.eswa.2016.04.011CrossRefGoogle Scholar
  25. 25.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol.: Official J. Int. Fed. Clin. Neurophysiol. 113(6), 767–91 (2002)CrossRefGoogle Scholar
  26. 26.
    Zhao, Q., Caiafa, C.F., Cichocki, A., Zhang, L., Phan, A.H.: Slice oriented tensor decomposition of EEG data for feature extraction in space, frequency and time domains. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009. LNCS, vol. 5863, pp. 221–228. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10677-4_25CrossRefGoogle Scholar
  27. 27.
    Zhu, X., Kim, J.: Application of analytic wavelet transform to analysis of highly impulsive noises. J. Sound Vibr. 294, 841–855 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jesús S. García-Salinas
    • 1
  • Luis Villaseñor-Pineda
    • 1
  • Carlos Alberto Reyes-García
    • 1
  • Alejandro Torres-García
    • 1
  1. 1.Biosignals Processing and Medical Computation Laboratory, Language Technologies LaboratoryInstituto Nacional de Astrofísica Óptica y ElectrónicaCholulaMéxico

Personalised recommendations