Advertisement

Model Calculations for Molecules

  • Larry A. ViehlandEmail author
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 105)

Abstract

Models played an important part in understanding drift-tube experiments where atomic ions moved through atomic gases. Such models were crucial when computers were primitive, and were abandoned only when advances in quantum mechanics, kinetic theory, and computer hardware and software made it possible (see Chaps.  5 and  6) to make accurate, ab initio calculations. For molecules, we have not reached such an advanced position, as demonstrated in Chap.  8. Hence, we will begin this study of model calculations for molecular systems with atomic models that have been applied to molecular systems, without repeating any of the discussion in Sect.  2.8.3.

References

  1. D.L. Albritton, I. Dotan, W. Lindinger, M. McFarland, J. Tellinghuisen, F.C. Fehsenfeld, J. Chem. Phys. 66, 410 (1977)ADSCrossRefGoogle Scholar
  2. G. Balla, A.D. Kostalos, J. Chem. Phys. 119, 11374 (2003)ADSCrossRefGoogle Scholar
  3. C. Bleiholder, N.R. Johnson, S. Contreras, T. Wyttenbach, M.T. Bowers, Anal. Chem. 87, 7196 (2015)CrossRefGoogle Scholar
  4. F. Calvo, F.Y. Naumkin, D.J. Wales, J. Chem. Phys. 135, 124308 (2011)ADSCrossRefGoogle Scholar
  5. D. Canzani, K.J. Laszlo, M.F. Bush, J. Phys. Chem. A 122, 5625 (2018)CrossRefGoogle Scholar
  6. A. Chicheportiche, B. Lepetit, M. Benhenni, F.X. Gadea, M. Yousfi, J. Phys. B 46, 065201 (2013a)ADSCrossRefGoogle Scholar
  7. A. Chicheportiche, M. Benhenni, M. Yousfi, B. Lepetit, R. Kalus, F.X. Gasea, Phys. Rev. E 88, 043104 (2013b)ADSCrossRefGoogle Scholar
  8. A.J. Davies, J. Dutton, C.J. Evans, A. Goodings, P.K. Stewart, J. Phys. D 17, 287 (1984)ADSCrossRefGoogle Scholar
  9. H.W. Ellis, R.Y. Pai, E.W. McDaniel, E.A. Mason, L.A. Viehland, At. Data Nucl. Data Tables 17, 177 (1976)ADSCrossRefGoogle Scholar
  10. F.O. Ellison, J. Am. Chem. Soc. 85, 3540 (1963)CrossRefGoogle Scholar
  11. G.A. Eiceman, Z. Karpas, H.H. Hill Jr., Ion Mobility Spectrometry, 3rd edn. (CRC Press, Boca Raton, 2014)Google Scholar
  12. H. Hahn, E.A. Mason, Phys. Rev. A 6, 1573 (1972)ADSCrossRefGoogle Scholar
  13. A. Hennad, O. Eichwald, M. Yousfi, O. Lamroud, J. Phys. III (France) 7, 1877 (1997)CrossRefGoogle Scholar
  14. S.R. Hunter, Aust. J. Phys. 30, 83 (1977)ADSCrossRefGoogle Scholar
  15. M.F. Jarrold, MOBCAL software at https://www.indiana.edu/~nano/software/ (Last modified June, 2000; accessed September, 2018)
  16. T.W. Knapman, J.T. Berryman, I. Campuzano, S.A. Harris, A.E. Ashcroft, Int. J. Mass Spectrom. 298, 17 (2010)CrossRefGoogle Scholar
  17. A.D. Koutselos, J. Chem. Phys. 102, 7216 (1995)ADSCrossRefGoogle Scholar
  18. A.D. Koutselos, J. Chem. Phys. 104, 8442 (1996)ADSCrossRefGoogle Scholar
  19. A.D. Koutselos, J. Chem. Phys. 106, 7117 (1997)ADSCrossRefGoogle Scholar
  20. C. Larriba, C.J. Hogan, J. Phys. Chem. A 117, 3887 (2013a)CrossRefGoogle Scholar
  21. C. Larriba, C.J. Hogan, J. Comput. Phys. 251, 344 (2013b)ADSMathSciNetCrossRefGoogle Scholar
  22. C. Larriba-Andaluz, C.J. Hogan, J. Chem. Phys. 141, 194107 (2014)CrossRefGoogle Scholar
  23. S.L. Lin, Monte Carlo simulation of the ion motion in drift tubes. Ph.D. thesis, University of Pittsburgh, Pennsylvania, 1976Google Scholar
  24. S.L. Lin, J.N. Bardsley, J. Phys. B 8, L461 (1975)ADSCrossRefGoogle Scholar
  25. S.L. Lin, J.N. Bardsley, J. Chem. Phys. 66, 435 (1977)ADSCrossRefGoogle Scholar
  26. S.L. Lin, J.N. Bardsley, Comput. Phys. Commun. 15, 161 (1978)ADSCrossRefGoogle Scholar
  27. A.I. McIntosh, Aust. J. Phys. 27, 59 (1974)ADSCrossRefGoogle Scholar
  28. E.A. Mason, H. Hahn, Phys. Rev. A 6, 1573 (1972)ADSCrossRefGoogle Scholar
  29. E.A. Mason, E.W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1988). Sec. 6–1CrossRefGoogle Scholar
  30. E.W. McDaniel, E.A. Mason, The Mobility and Diffusion of Ions in Gases (Wiley, New York, 1973). Ch. 6Google Scholar
  31. M.F. Mesleh, J.M. Hunter, A.A. Shvartsburg, G.C. Shatz, M.F. Jarrold, J. Phys. Chem. A 100, 16082 (1996)CrossRefGoogle Scholar
  32. H. Ouyang, C. Larriba-Andaluz, D.R. Oberreit, C.J. Hogan, J. Am. Soc. Mass Spectrom. 24, 1833 (2013)ADSCrossRefGoogle Scholar
  33. P.L. Patterson, J. Chem. Phys. 53, 696 (1970)ADSCrossRefGoogle Scholar
  34. V. Shrivastav, M. Nahin, C. J. Hogan, C. Larriba-Andaluz, J. Am. Soc. Mass Spectrom. 28, 1540 (2017)ADSCrossRefGoogle Scholar
  35. A.A. Shvartsburg, M.F. Jarrold, Chem. Phys. Lett. 261, 86 (1996)ADSCrossRefGoogle Scholar
  36. A.A. Shvartsburg, B. Liu, M.F. Jarrod, K.-M. Ho, J. Chem. Phys. 112, 4517 (2000)ADSCrossRefGoogle Scholar
  37. A.A. Shvartsburg, R.R. Hudgins, P. Dugourd, M.F. Jarrold, Chem. Soc. Rev. 30, 26 (2001)CrossRefGoogle Scholar
  38. A.A. Shvartsburg, Differential Ion Mobility Spectrometry (CRC Press, Boca Raton, 2009)Google Scholar
  39. H.R. Skullerud, J. Phys. D 1, 1567 (1968)ADSCrossRefGoogle Scholar
  40. B.E. Thompson, H.H. Sawin, D.A. Fisher, J. Appl. Phys. 63, 2241 (1988)ADSCrossRefGoogle Scholar
  41. L.A. Viehland, E.A. Mason, W.F. Morrison, M.R. Flannery, At. Data Nucl. Data Tables 16, 495 (1975)ADSCrossRefGoogle Scholar
  42. G. von Helden, M.-T. Hsu, N. Gotts, M.T. Bowers, J. Phys. Chem. 97, 8182 (1993)CrossRefGoogle Scholar
  43. G.H. Wannier, Bell Syst. Tech. J. 32, 170 (1953)CrossRefGoogle Scholar
  44. M. Yousfi, A. Hennad, O. Eichwald, J. Appl. Phys. 84, 107 (1998)ADSCrossRefGoogle Scholar
  45. L. Zanotto, G. Heerdt, P.C.T. Souza, G. Araujo, M.S. Skaf, J. Comput. Chem. 39, 1675 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Science DepartmentChatham UniversityPittsburghUSA

Personalised recommendations