Advertisement

An Adaptive Hybrid Evolutionary Approach for a Project Scheduling Problem that Maximizes the Effectiveness of Human Resources

  • Virginia Yannibelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11288)

Abstract

In this paper, an adaptive hybrid evolutionary algorithm is proposed to solve a project scheduling problem. This problem considers a valuable optimization objective for project managers. This objective is maximizing the effectiveness of the sets of human resources assigned to the project activities. The adaptive hybrid evolutionary algorithm utilizes adaptive processes to develop the different stages of the evolutionary cycle (i.e., adaptive parent selection, survival selection, crossover, mutation and simulated annealing processes). These processes adapt their behavior according to the diversity of the algorithm’s population. The utilization of these processes is meant to enhance the evolutionary search. The performance of the adaptive hybrid evolutionary algorithm is evaluated on six instance sets with different complexity levels, and then is compared with those of the algorithms previously reported in the literature for the addressed problem. The obtained results indicate that the adaptive hybrid evolutionary algorithm significantly outperforms the algorithms previously reported.

Keywords

Project scheduling Human resource assignment Multi-skilled resources Evolutionary algorithms Adaptive evolutionary algorithms Hybrid evolutionary algorithms 

References

  1. 1.
    Heerkens, G.R.: Project Management. McGraw-Hill, New York City (2002)Google Scholar
  2. 2.
    Wysocki, R.K.: Effective Project Management, 3rd edn. Wiley, Hoboken (2003)Google Scholar
  3. 3.
    De Bruecker, P., Van den Bergh, J., Beliën, J., Demeulemeester, E.: Workforce planning incorporating skills: state of the art. Eur. J. Oper. Res. 243(1), 1–16 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck, L.: Personnel scheduling: a literature review. Eur. J. Oper. Res. 226(3), 367–385 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Yannibelli, V., Amandi, A.: A knowledge-based evolutionary assistant to software development project scheduling. Expert Syst. Appl. 38(7), 8403–8413 (2011)CrossRefGoogle Scholar
  6. 6.
    Blazewicz, J., Lenstra, J., Rinnooy, K.A.: Scheduling subject to resource constraints: classification and complexity. Discrete Appl. Math. 5, 11–24 (1983)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Yannibelli, V., Amandi, A.: A memetic approach to project scheduling that maximizes the effectiveness of the human resources assigned to project activities. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012. LNCS (LNAI), vol. 7208, pp. 159–173. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28942-2_15CrossRefGoogle Scholar
  8. 8.
    Yannibelli, V., Amandi, A.: A diversity-adaptive hybrid evolutionary algorithm to solve a project scheduling problem. In: Corchado, E., Lozano, José A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 412–423. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10840-7_50CrossRefGoogle Scholar
  9. 9.
    Yannibelli, V., Amandi, A.: Hybrid evolutionary algorithm with adaptive crossover, mutation and simulated annealing processes to project scheduling. In: Jackowski, K., Burduk, R., Walkowiak, K., Woźniak, M., Yin, H. (eds.) IDEAL 2015. LNCS, vol. 9375, pp. 340–351. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24834-9_40CrossRefGoogle Scholar
  10. 10.
    Yannibelli, V., Amandi, A.: Scheduling projects by a hybrid evolutionary algorithm with self-adaptive processes. In: Sidorov, G., Galicia-Haro, Sofía N. (eds.) MICAI 2015. LNCS (LNAI), vol. 9413, pp. 401–412. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27060-9_33CrossRefGoogle Scholar
  11. 11.
    Yannibelli, V., Amandi, A.: Project Scheduling: a memetic algorithm with diversity-adaptive components that optimizes the effectiveness of human resources. Polibits 52, 93–103 (2015)CrossRefGoogle Scholar
  12. 12.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. NCS. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-44874-8CrossRefzbMATHGoogle Scholar
  13. 13.
    Rodriguez, F.J., García-Martínez, C., Lozano, M.: Hybrid metaheuristics based on evolutionary algorithms and simulated annealing: taxonomy, comparison, and synergy test. IEEE Trans. Evol. Comput. 16(6), 787–800 (2012)CrossRefGoogle Scholar
  14. 14.
    Talbi, E. (ed.): Hybrid Metaheuristics. SCI, vol. 434. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  15. 15.
    Cheng, J., Zhang, G., Caraffini, F., Neri, F.: Multicriteria adaptive differential evolution for global numerical optimization. Integr. Comput.-Aided Eng. 22(2), 103–117 (2015)CrossRefGoogle Scholar
  16. 16.
    Wang, R., Zhang, Y., Zhang, L.: An adaptive neural network approach for operator functional state prediction using psychophysiological data. Integr. Comput.-Aided Eng. 23, 81–97 (2016)CrossRefGoogle Scholar
  17. 17.
    Zhu, Z., Xiao, J., Li, J.Q., Wang, F., Zhang, Q.: Global path planning of wheeled robots using multi-objective memetic algorithms. Integr. Comput.-Aided Eng. 22(4), 387–404 (2015)CrossRefGoogle Scholar
  18. 18.
    Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur. J. Oper. Res. 174, 23–37 (2006)CrossRefGoogle Scholar
  19. 19.
    Li, H., Womer, N.K.: Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming. Eur. J. Oper. Res. 246(1), 20–33 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Heimerl, C., Kolisch, R.: Scheduling and staffing multiple projects with a multi-skilled workforce. OR Spectrum 32(4), 343–368 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li, H., Womer, K.: Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm. J. Sched. 12, 281–298 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Drezet, L.E., Billaut, J.C.: A project scheduling problem with labour constraints and time-dependent activities requirements. Int. J. Prod. Econ. 112, 217–225 (2008)CrossRefGoogle Scholar
  23. 23.
    Bellenguez, O., Néron, E.: A branch-and-bound method for solving multi-skill project scheduling problem. RAIRO – Oper. Res. 41(2), 155–170 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Braekers, K., Hartl, R.F., Parragh, S.N., Tricoire, F.: A bi-objective home care scheduling problem: analyzing the trade-off between costs and client inconvenience. Eur. J. Oper. Res. 248(2), 428–443 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Aickelin, U., Burke, E., Li, J.: An evolutionary squeaky wheel optimization approach to personnel scheduling. IEEE Trans. Evol. Comput. 13(2), 433–443 (2009)CrossRefGoogle Scholar
  26. 26.
    Valls, V., Pérez, A., Quintanilla, S.: Skilled workforce scheduling in service centers. Eur. J. Oper. Res. 193(3), 791–804 (2009)CrossRefGoogle Scholar
  27. 27.
    Bellenguez, O., Néron, E.: Lower bounds for the multi-skill project scheduling problem with hierarchical levels of skills. In: Burke, E., Trick, M. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 229–243. Springer, Heidelberg (2005).  https://doi.org/10.1007/11593577_14CrossRefGoogle Scholar
  28. 28.
    Silva, T., De Souza, M., Saldanha, R., Burke, E.: Surgical scheduling with simultaneous employment of specialised human resources. Eur. J. Oper. Res. 245(3), 719–730 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Gutjahr, W.J., Katzensteiner, S., Reiter, P., Stummer, Ch., Denk, M.: Competence-driven project portfolio selection, scheduling and staff assignment. CEJOR 16(3), 281–306 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hanne, T., Nickel, S.: A multiobjective evolutionary algorithm for scheduling and inspection planning in software development projects. Eur. J. Oper. Res. 167, 663–678 (2005)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. 24(4), 656–667 (1994)CrossRefGoogle Scholar
  32. 32.
    Mahfoud, S.W.: Crowding and preselection revised. Parallel Problem Solving from Nature 2, 27–36 (1992)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.ISISTAN Research InstituteUNCPBA University, Campus UniversitarioTandilArgentina
  2. 2.CONICET, National Council of Scientific and Technological ResearchBuenos AiresArgentina

Personalised recommendations