Advertisement

Modeling Decisions for Project Scheduling Optimization Problem Based on Type-2 Fuzzy Numbers

  • Margarita Knyazeva
  • Alexander BozhenyukEmail author
  • Janusz Kacprzyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11288)

Abstract

This paper examines type-2 fuzzy numbers implementation to resource-constrained scheduling problem (RCSP) for agriculture production system based on expert parameter estimations. Some critical parameters in production system are usually treated as uncertain variables due to environmental changes that influence agriculture process. Implementation of type-2 fuzzy sets (T2FSs) can handle uncertain data when estimating variables for solving decision-making problems. The paper focuses on estimation procedure of uncertain variables in scheduling that reflect level of preference or attitude of decision-maker towards imprecise concepts, relations between variables. Special profiles for activity performance allow to consider uncertainty in time variables, expert estimations, flexibilities in scheduling, resource levelling problem and combinatorial nature of solution methodology. An example of activities for agriculture production system is introduced. Heuristic decision algorithm based on enumeration tree and partial schedules is developed. It can handle both resource-constrained optimization problem under uncertain variables and activity profile switching. As initial activity profile we consider expert decision about best activity execution profile on each level of enumeration tree.

Keywords

Type-2 fuzzy number Fuzzy graph Combinatorial optimization Scheduling 

Notes

Acknowledgments

This work has been supported by the Ministry of Education and Science of the Russian Federation under Project “Methods and means of decision making on base of dynamic geographic information models” (Project part, State task 2.918.2017).

References

  1. 1.
    Blazewicz, J.: Scheduling subject to resource constraints: classification and complexity. Discrete Appl. Math. 5(1), 11–24 (1983)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brentrup, F., Küsters, J., Lammela, J., Barraclough, P., Kuhlmann, H.: Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. Eur. J. Agron. 20, 265–279 (2004)CrossRefGoogle Scholar
  3. 3.
    Billaut, J.-C., Moukrim, A., Sanlaville, E.: Flexibility and Robustness in Scheduling. Control Systems, Robotics and Manufacturing Series. Willey-ISTE, Hoboken (2013)Google Scholar
  4. 4.
    Dubois, D., Fargier, H., Fortemps, F.: Fuzzy scheduling: profilelling flexible constraints vs. coping with incomplete knowledge. Eur. J. Oper. Res. 147, 231–252 (2003)CrossRefGoogle Scholar
  5. 5.
    Brucker, P., Knust, S.: Complex Scheduling, pp. 29–115. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-23929-8CrossRefzbMATHGoogle Scholar
  6. 6.
    Knyazeva, M., Bozhenyuk, A., Rozenberg, I.: Scheduling alternatives with respect to fuzzy and preference modeling on time parameters. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT - 2017. AISC, vol. 642, pp. 358–369. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-66824-6_32CrossRefGoogle Scholar
  7. 7.
    Liang, G., Wang, M.J.: Personnel selection using fuzzy MCDM algorithm. Eur. J. Oper. Res. 78(1), 22–33 (1994)CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Elhag, T.M.S.: Fuzzy topsis method based on alpha level sets with an application to bridge risk assessment. Expert Syst. Appl. 31(2), 309–319 (2006)CrossRefGoogle Scholar
  9. 9.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)CrossRefGoogle Scholar
  11. 11.
    Atanassov, K.T.: Two theorems for intuitionistic fuzzy sets. Fuzzy Sets Syst. 110, 267–269 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Atanassov, K.T., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, P.J., Wang, X., Cai, C.: Some new operation rules and a new ranking method for interval-valued intuitionistic linguistic numbers. J. Intell. Fuzzy Syst. 32(1), 1069–1078 (2017)CrossRefGoogle Scholar
  14. 14.
    Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)zbMATHGoogle Scholar
  15. 15.
    Rodríguez, R.M., Martínez, L., Torra, V., Xu, Z.S., Herrera, F.: Hesitant fuzzy sets: state of the art and future directions. Int. J. Intell. Syst. 29(6), 495–524 (2014)CrossRefGoogle Scholar
  16. 16.
    Majumdar, P.: Neutrosophic sets and its applications to decision making. In: Acharjya, D., Dehuri, S., Sanyal, S. (eds.) Computational Intelligence for Big Data Analysis. Adaptation, Learning, and Optimization, vol. 19, pp. 97–115. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16598-1_4CrossRefGoogle Scholar
  17. 17.
    Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)CrossRefGoogle Scholar
  18. 18.
    Wang, J., Chen, Q., Zhang, H., Chen, X., Wang, J.: Multi-criteria decision method based on type-2 fuzzy sets. Filomat 31(2), 431–450 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Dubois, D., Prade, H.: Additions of interactive fuzzy numbers. IEEE Trans. Autom. Control 26(4), 99–135 (1981)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Herroelen, W., De Reyck, B., Demeulemeester, E.: Resource-constrained project scheduling: notation, classification, modes and methods by Brucker et al. Eur. J. Oper. Res. 128(3), 221–230 (2000)Google Scholar
  21. 21.
    Cheng, C.-H.: A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets Syst. 95, 307–317 (1998)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Liou, T.-S., Wang, M.-J.: Ranking fuzzy numbers with integral value. Fuzzy Sets Syst. 50, 247–255 (1992)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hartmann, S., Drexl, A.: Project scheduling with multiple modes: a comparison of exact algorithms. Networks 32, 283–297 (1998)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Chen, S.M., Lee, L.W.: Fuzzy multiple attributes group decision making based on the interval type-2 TOPSIS method. Expert Syst. Appl. 37, 2790–2798 (2010)CrossRefGoogle Scholar
  25. 25.
    Cheng, J., Fowler, J., Kempf, K., Mason, S.: Multi-mode resource-constrained project scheduling problems with non-preemptive activity splitting. Comput. Oper. Res. 53, 275–287 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Southern Federal UniversityTaganrogRussia
  2. 2.Systems Research Institute Polish Academy of SciencesWarsawPoland

Personalised recommendations