Advertisement

Memetic Algorithm for Constructing Covering Arrays of Variable Strength Based on Global-Best Harmony Search and Simulated Annealing

  • Jimena Timaná
  • Carlos Cobos
  • Jose Torres-Jimenez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11288)

Abstract

Covering Arrays (CA) are mathematical objects widely used in the design of experiments in several areas of knowledge and of most recent application in hardware and software testing. CA construction is a complex task that entails a high run time and high computational load. To date, research has been carried out for constructing optimal CAs using exact methods, algebraic methods, Greedy methods, and metaheuristic-based methods. These latter, including among them Simulated Annealing and Tabu Search, have reported the best results in the literature. Their effectiveness is largely due to the use of local optimization techniques with different neighborhood schemes. Given the excellent results of Global-best Harmony Search (GHS) algorithm in various optimization problems and given that it has not been explored in CA construction, this paper presents a memetic algorithm (GHSSA) using GHS for global search, SA for local search and two neighborhood schemes for the construction of uniform and mixed CAs of different strengths. GHSSA achieved competitive results on comparison with the state of the art and in experimentation did not require the use of supercomputers.

Keywords

Covering array Metaheuristics Global-best Harmony Search Simulated annealing 

References

  1. 1.
    Torres-Jimenez, J., Izquierdo-Marquez, I.: Survey of covering arrays. In: 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 20–27 (2013)Google Scholar
  2. 2.
    George, H.A.: Constructing covering arrays using parallel computing and grid computing. Ph.D., Departamento de Sistemas Informáticos y Computación, Universitad Politécnica de Valencia, Valencia, Spain (2012)Google Scholar
  3. 3.
    Turban, R.C., Adviser-Colbourn, C.: Algorithms for Covering Arrays. Arizona State University, Tempe (2006)Google Scholar
  4. 4.
    Kacker, R.N., et al.: Combinatorial testing for software: an adaptation of design of experiments. Measurement 46, 3745–3752 (2013)CrossRefGoogle Scholar
  5. 5.
    Cohen, M.B., et al.: Constructing test suites for interaction testing. Presented at the Proceedings of the 25th International Conference on Software Engineering, Portland, Oregon (2003)Google Scholar
  6. 6.
    Nurmela, K.J.: Upper bounds for covering arrays by tabu search. Discret. Appl. Math. 138, 143–152 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Stardom, J.: Metaheuristics and the search for covering and packing arrays [microform]. M.Sc. thesis, Simon Fraser University (2001)Google Scholar
  8. 8.
    Shiba, T., et al.: Using artificial life techniques to generate test cases for combinatorial testing. In: 2004 Proceedings of the 28th Annual International Computer Software and Applications Conference, COMPSAC 2004, vol. 1, pp. 72–77 (2004)Google Scholar
  9. 9.
    Omran, M.G.H., Mahdavi, M.: Global-best harmony search. Appl. Math. Comput. 198, 643–656 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bryce, R.C., Colbourn, C.J.: A density-based greedy algorithm for higher strength covering arrays. Softw. Test. Verif. Reliab. 19, 37–53 (2009)CrossRefGoogle Scholar
  11. 11.
    Walker Ii, R.A., Colbourn, C.J.: Tabu search for covering arrays using permutation vectors. J. Stat. Plan. Inference 139, 69–80 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Forbes, M., et al.: Refining the in-parameter-order strategy for constructing covering arrays. J. Res. Natl. Inst. Stand. Technol. 113, 287–297 (2008)CrossRefGoogle Scholar
  13. 13.
    Torres-Jimenez, J., Rodriguez-Tello, E.: Simulated annealing for constructing binary covering arrays of variable strength. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2010)Google Scholar
  14. 14.
    Lei, Y., et al.: IPOG: a general strategy for t-way software testing. Presented at the Proceedings of the 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (2007)Google Scholar
  15. 15.
    Rodriguez-Cristerna, A., Torres-Jimenez, J.: A simulated annealing with variable neighborhood search approach to construct mixed covering arrays. Electron. Notes Discret. Math. 39, 249–256 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hernández, A.L.G.: Un Algoritmo de Optimizacion Combinatoria para la Construccion de Covering Arrays Mixtos de Fuerza Variable. Ph.D., Laboratorio de Tecnologías de la Información, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (2013)Google Scholar
  17. 17.
    Avila-George, H., Torres-Jimenez, J., Hernández, V., Gonzalez-Hernandez, L.: Simulated annealing for constructing mixed covering arrays. In: Omatu, S., De Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 657–664. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28765-7_79CrossRefGoogle Scholar
  18. 18.
    Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64, 1695–1724 (2013)CrossRefGoogle Scholar
  19. 19.
    LaTorre, A., et al.: Multiple offspring sampling in large scale global optimization. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jimena Timaná
    • 1
  • Carlos Cobos
    • 1
  • Jose Torres-Jimenez
    • 2
  1. 1.Information Technology Research Group (GTI)Universidad del CaucaPopayánColombia
  2. 2.Center for Research and Advanced Studies of the National Polytechnic InstituteCiudad VictoriaMexico

Personalised recommendations