Dynamic Selection Feature Extractor for Trademark Retrieval

  • Simone B. K. AiresEmail author
  • Cinthia O. A. FreitasEmail author
  • Mauren L. Sguario
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11288)


The paper contributes to the CBIR systems applied to trademark retrieval. The proposed method seeks to find dynamically the best feature extractor that represents the trademark queried. In the experiments are applied four feature extractors: Concavity/Convexity deficiencies (CC), Freeman Chain (FC), Scale Invariant Feature Transform (SIFT) and Hu Invariant Moments (Hu). These extractors represent a set of classes of features extractors, which are submitted to a classification process using two different classifiers: ANN (Artificial Neural Networks) and SVM (Support Vector Machines). The selecting the best feature extractor is important to processing the next levels in search of similar trademarks (i.e. applying zoning mechanisms or combining the best feature extractors), because it is possible restrict the number of operations in large databases. We carried out experiments using UK Patent Office database, with 10,151 images. Our results are in the same basis of the literature and the average in the best case for the normalized recall (Rn) is equal to 0.91. Experiments show that dynamic selection of extractors can contribute to improve the trademarks retrieval.


Dynamic selection Feature extractor ANN SVM 



The authors wish to thanks the CAPES, Federal Technological University of Parana (UTFPR-PG, Brazil) and Pontifical Catholic University of Parana (PUCPR, Brazil), which have supported this work.


  1. 1.
    Eakins, J.P., Boardman, J.M., Graham, M.E.: Similarity retrieval of trademarks image. IEEE Multimedia 5, 53–63 (1998)CrossRefGoogle Scholar
  2. 2.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cerri, A., Ferri, M., Gioirgi, D.: Retrieval of trademarks images by means of size functions. Graph. Models 68(5–6), 451–471 (2006)CrossRefGoogle Scholar
  4. 4.
    Abe, K., Iguchi, H., Tian, H., Roy, D.: Recognition of plural grouping patterns in trademarks for CBIR according to the Gestalt psychology. Inst. Eletron. Inf. Commun. Eng. 89(6), 1798–1805 (2006)Google Scholar
  5. 5.
    Haitao, R., Yeli, L., Likun, L.: Single closed contour trademark classification based on support vector machine. In: 3rd International Congress on Image and Signal Processing (CISP), pp. 1942–1946 (2010)Google Scholar
  6. 6.
    Rufino, H.L.P.: Algoritmo de Aprendizado Supervisionado - Baseado em Máquina de Vetores de Suporte - Uma contribuição Para o Reconhecimento de Dados Desbalanceados. Universidade Federal de Uberlândia. Tese de Doutorado (2011)Google Scholar
  7. 7.
    Anuar, F.M., Setchi, R., Yu-Kun, L.: Trademark image retrieval using an integrated shape descriptor. Expert Sys. Appl. 40(1), 105–121 (2013)CrossRefGoogle Scholar
  8. 8.
    Sahbi, H., Ballan, L., Serra, G., Bimbo, A.D.: Context-dependent logo matching and recognition. IEEE Trans. Image Process. 22(3), 1018–1030 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Aires, S.B.K., Freitas, C.O.A., Oliveira, L.S.: Feature Analysis for Content-based Trademark Retrieval. In: 27th International Conference on Computer Applications in Industry and Engineering, New Orleans, USA, pp. 245–249 (2014)Google Scholar
  10. 10.
    Liu, Y.: Sistema de recomendação dos amigos na rede social online baseado em Máquinas de Vetores Suporte. Dissertação de Mestrado. UnB, Brasília (2014)Google Scholar
  11. 11.
    Aires, S.B.K., Freitas, C.O.A., Soares, L.E.O.: SIFT applied to perceptual zoning for trademark retrieval. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC 2015), v. 1 (2015)Google Scholar
  12. 12.
    Kumar, R., Tripathi, R.C., Tiwari, M.D.: A comprehensive study on content based trademark retrieval system. Int. J. Comput. Appl. 13, 18–22 (2011)Google Scholar
  13. 13.
    Shaaban, Z.: Trademark image retrieval system using neural network. Int. J. Comput. Sci. Netw. (IJCSN) 3, 73–82 (2014)Google Scholar
  14. 14.
    Wu, J.K., Lam, C.P., Mehtre, B.M., Gao, Y.J., Narasimhalu, A.: Content based retrieval for trademark registration. Multimedia Tools Appl. 3(3), 245–267 (1996)CrossRefGoogle Scholar
  15. 15.
    Aker, C., Tursun, O., Kalkan, S. :Analyzing deep features for trademark retrieval. In: 25th Signal Processing and Communications Applications Conference (SIU) (2017)Google Scholar
  16. 16.
    Chang, C.C., Lin, C.J.: LIBSVM - a library for support vector machines. Disponível em Acessado em 07 de maio de 2018
  17. 17.
    INTELLECTUAL Property Office. Disponível em Acesso em 20 de junho de 2018

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universidade Tecnológica Federal do ParanáPonta GrossaBrazil
  2. 2.Pontifícia Universidade Católica do ParanáCuritibaBrazil

Personalised recommendations