Advertisement

Diagnostic Techniques: Angiography

  • Kaan Gündüz
  • Yağmur Seda Yeşiltaş
Chapter

Abstract

Fluorescein angiography (FA) and indocyanine green angiography (ICGA) are usually not essential in the diagnosis of intraocular tumors except for retinal tumors, when these ancillary tests assist in establishing the correct diagnosis. Among choroidal tumors, FA and ICGA are particularly useful in establishing the diagnosis of choroidal hemangioma, revealing choroidal folds, and ruling out simulating conditions including central serous chorioretinopathy. In addition, over the past few decades, these dye-based invasive diagnostic procedures have played a pivotal role in expanding our understanding of retinal and choroidal anatomy, pathology, and pathophysiology. Ocular angiography techniques are also used to assess disease progression and treatment side effects (e.g., radiation retinopathy). The use of composite image technology and wide-angle angiography systems has made it possible to see multiple or extensive areas of interest on one photograph improving diagnostic accuracy.

Fluorescein angiography has recently been supplemented by optical coherence tomography angiography in the evaluation of tumors in the macular region. Optical coherence tomography angiography is a non-invasive, dye-less procedure that provides information concerning both the inner and outer retinal vascular plexuses as well as the choroid. Intraocular tumors can manifest around the optic disc and in the macula but also anywhere in the fundus; therefore, the importance of FA and ICGA in the evaluation of more peripheral tumors and simulating conditions still prevails.

Keywords

Fluorescein Indocyanine green Angiography Fluorescence Intrinsic tumor vessels Double circulation Washout phenomenon Leopard skin appearance Fluorescein cap sign Leakage Staining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blodi CF, Russell SR, Pulido JS, Folk JC. Direct and feeder vessel photocoagulation of retinal angiomas with dye yellow laser. Ophthalmology 1990;97:791–5; discussion 796–7.CrossRefGoogle Scholar
  2. 2.
    Wykoff CC, Flynn HW Jr, Han DP. Allergy to povidone-iodine and cephalosporins: the clinical dilemma in ophthalmic use. Am J Ophthalmol. 2011;151:4–6.CrossRefGoogle Scholar
  3. 3.
    Shields CL, Kancherla S, Patel J, et al. Clinical survey of 3680 iris tumors based on patient age at presentation. Ophthalmology. 2012;119:407–14.CrossRefGoogle Scholar
  4. 4.
    Dart JK, Marsh RJ, Garner A, et al. Fluorescein angiography of anterior uveal melanocytic tumours. Br J Ophthalmol. 1988;72:326–37.Google Scholar
  5. 5.
    Broaddus E, Lystad LD, Schonfield L, et al. Iris varix: report of a case and review of iris vascular anomalies. Surv Ophthalmol. 2009;54:118–27.Google Scholar
  6. 6.
    Shields JA, Bianciotto C, Kligman BE, et al. Vascular tumors of the iris in 45 patients: the 2009 Helen Keller lecture. Arch Ophthalmol. 2010;128:1107–13.Google Scholar
  7. 7.
    Shields JA, Streicher TF, Spirkova JH, et al. Arteriovenous malformation of the iris in 14 cases. Arch Ophthalmol. 2006;124:370–5.CrossRefGoogle Scholar
  8. 8.
    Shields JA, Sanborn GE, Augsburger JJ, et al. Fluorescein angiography of retinoblastoma. Retina. 1982;2:206–14.CrossRefGoogle Scholar
  9. 9.
    Bianciotto C, Shields CL, Iturralde JC, et al. Fluorescein angiographic findings after intra-arterial chemotherapy for retinoblastoma. Ophthalmology. 2012;119:843–9.CrossRefGoogle Scholar
  10. 10.
    Heimann H, Jmor F, Damato B. Imaging of retinal and choroidal vascular tumours. Eye. 2013;27:208–16.CrossRefGoogle Scholar
  11. 11.
    Agarwal A, Kumari N, Singh R. Intravitreal bevacizumab and feeder vessel laser treatment for a posteriorly located retinal capillary hemangioma. Int Ophthalmol. 2016;36:747–50.CrossRefGoogle Scholar
  12. 12.
    Shields CL, Kaliki S, Al-Dahmash S, et al. Retinal vasoproliferative tumors: comparative clinical features of primary vs secondary tumors in 334 cases. JAMA Ophthalmol. 2013;131:328–34.CrossRefGoogle Scholar
  13. 13.
    Shields JA, Decker WL, Sanborn GE, et al. Presumed acquired retinal hemangiomas. Ophthalmology. 1983;90:1292–300.CrossRefGoogle Scholar
  14. 14.
    Drummond JW, Hall DL, Steen WH, et al. Cavernous hemangioma of the optic disc. Ann Ophthalmol. 1980;12:1017–8.PubMedGoogle Scholar
  15. 15.
    Materin MA, Shields CL, Marr BP, et al. Retinal racemose hemangioma. Retina. 2005;25:936–7.CrossRefGoogle Scholar
  16. 16.
    Mennel S, Meyer CH, Eggarter F, et al. Autofluorescence and angiographic findings of retinal astrocytic hamartomas in tuberous sclerosis. Ophthalmologica. 2005;219:350–6.Google Scholar
  17. 17.
    Shields JA, Shields CL. Tumors and related lesions of the pigment epithelium. In: Shields JA, Shields CL, editors. Intraocular tumors: an atlas and textbook. Philadelphia: Lippincott, Williams and Wilkins; 2008. p. 432–79.Google Scholar
  18. 18.
    Shields CL, Shields JA, Marr BP, et al. Congenital simple hamartoma of the retinal pigment epithelium: a study of five cases. Ophthalmology. 2003;110:1005–11.CrossRefGoogle Scholar
  19. 19.
    Shields CL, Mashayekhi A, Ho T, et al. Solitary congenital hypertrophy of the retinal pigment epithelium: clinical features and frequency of enlargement in 330 patients. Ophthalmology. 2003;110:1968–76.CrossRefGoogle Scholar
  20. 20.
    Arevalo JF, Shields CL, Shields JA, et al. Angiography of retinal and choroidal tumors. In: Arevalo JF, editor. Retinal angiography and optical coherence tomography. New York: Springer; 2009. p. 179–98.CrossRefGoogle Scholar
  21. 21.
    Gass JD. Fluorescein angiography. An aid in the differential diagnosis of intraocular tumors. Int Ophthalmol Clin. 1972;12:85–120.PubMedGoogle Scholar
  22. 22.
    Gunduz K, Pulido JS, Pulido JE, et al. Correlation of fundus autofluorescence with fluorescein and indocyanine green angiography in choroidal melanocytic lesions. Retina. 2008;28:1257–64.Google Scholar
  23. 23.
    Zografos L, Uffer S, Coscas G. Tumors of the choroid and retinal pigment epithelium. In: Coscas G, Coscas F, Zourdani A, editors. Atlas of indocyanine green angiography. Paris: Elsevier; 2015. p. 345–83.Google Scholar
  24. 24.
    Shields JA, Annesley WH Jr, Totino JA. Nonfluorescent malignant melanoma of the choroid diagnosed with the radioactive phosphorus uptake test. Am J Ophthalmol. 1975;79:634–40.CrossRefGoogle Scholar
  25. 25.
    Flindall RJ, Gass JD. A histopathologic fluorescein angiographic correlative study of malignant melanomas of the choroid. Can J Ophthalmol. 1971;6:258–67.PubMedGoogle Scholar
  26. 26.
    Hayreh SS. Choroidal melanomata. Fluorescence angiographic and histopathological study. Br J Ophthalmol. 1970;54:145–60.CrossRefGoogle Scholar
  27. 27.
    Pettit TH, Barton A, Foos RY, et al. Fluorescein angiography of choroidal melanomas. Arch Ophthalmol. 1970;83:27–38.Google Scholar
  28. 28.
    Shields JA, Shields CL, editors. Intraocular tumors: a text and atlas. Philadelphia: WB Saunders; 1992. p. 137–69.Google Scholar
  29. 29.
    Cantrill HL, Cameron JD, Ramsey RC, et al. Retinal vascular changes in malignant melanoma of the choroid. Am J Ophthalmol. 1984;97:411–8.Google Scholar
  30. 30.
    Augsburger JJ, Golden MI, Shields JA. Fluorescein angiography of choroidal malignant melanomas with retinal invasion. Retina. 1984;4:232–41.CrossRefGoogle Scholar
  31. 31.
    Keunen JE, Hooymans JM, Ulbig MW, et al. Retinal neovascularization in choroidal melanoma without retinal ischemia. Retina. 2002;22:371–4.Google Scholar
  32. 32.
    Mueller AJ, Freeman WR, Schaller UC, et al. Complex microcirculation patterns detected by confocal indocyanine green angiography predict time to growth of small choroidal melanocytic tumors: MuSIC report II. Ophthalmology. 2002;109:2207–14.CrossRefGoogle Scholar
  33. 33.
    Mueller AJ, Bartch DU, Folberg R, et al. Imaging the microvasculature of choroidal melanoma with confocal indocyanine green scanning laser ophthalmoscopy. Arch Ophthalmol. 1998;116:31–9.CrossRefGoogle Scholar
  34. 34.
    Rummelt V, Folberg R, Rummelt C, et al. Microcirculation architecture of melanocytic nevi and malignant melanomas of the ciliary body and choroid. Ophthalmology. 1994;101:718–27.CrossRefGoogle Scholar
  35. 35.
    Shields CL, Shields JA, De Potter P. Patterns of indocyanine green videoangiography of choroidal tumours. Br J Ophthalmol. 1995;79:237–45.CrossRefGoogle Scholar
  36. 36.
    Shields JA, Demirci H, Mashayekhi A, et al. Melanocytoma of optic disc in 115 cases: the 2004 Samuel Johnson Memorial Lecture, part 1. Ophthalmology. 2004;111:1739–46.Google Scholar
  37. 37.
    Witschel H, Font RL. Hemangioma of the choroid. A clinicopathologic study of 71 cases and a review of the literature. Surv Ophthalmol. 1976;20:415–31.CrossRefGoogle Scholar
  38. 38.
    Arevalo JF, Shields CL, Shields JA, et al. Circumscribed choroidal hemangioma: characteristic features with indocyanine green videoangiography. Ophthalmology. 2000;107:344–50.CrossRefGoogle Scholar
  39. 39.
    Gass JD. New observations concerning choroidal osteomas. Int Ophthalmol. 1979;1:71–84.CrossRefGoogle Scholar
  40. 40.
    Shields CL, Sun H, Demirci H, et al. Factors predictive of tumor growth, tumor decalcification, choroidal neovascularization, and visual outcome in 74 eyes with choroidal osteoma. Arch Ophthalmol. 2005;123:1658–66.Google Scholar
  41. 41.
    Shields CL, Brown GC, Sharma S, et al. Choroidal osteoma. In: Ryan S, Schachat A, Wilkinson C, et al., editors. Retina. 4th ed. Philadelphia: Elsevier Mosby; 2006. p. 819–28.Google Scholar
  42. 42.
    Desai UR, Tawansy KA, Joondeph BC, et al. Choroidal granulomas in systemic sarcoidosis. Retina. 2001;21:40–7.Google Scholar
  43. 43.
    Davis DL, Robertson DM. Fluorescein angiography of metastatic choroidal tumors. Arch Ophthalmol. 1973;89:97–9.CrossRefGoogle Scholar
  44. 44.
    Arepalli S, Kaliki S, Shields CL. Choroidal metastases: origin, features, and therapy. Indian J Ophthalmol. 2015;63:122–7.CrossRefGoogle Scholar
  45. 45.
    Natesh S, Chin KJ, Finger PT. Choroidal metastases fundus autofluorescence imaging: correlation to clinical, OCT, and fluorescein angiographic findings. Ophthalmic Surg Lasers Imaging. 2010;41:406–12.CrossRefGoogle Scholar
  46. 46.
    Chan CC, Rubenstein JL, Coupland SE, et al. Primary vitreoretinal lymphoma: a report from an International Primary Central Nervous System Lymphoma Collaborative Group symposium. Oncologist. 2011;16:1589–99.CrossRefGoogle Scholar
  47. 47.
    Gunduz K, Pulido JS, McCannel CA, et al. Ocular manifestations and treatment of central nervous system lymphomas. Neurosurg Focus. 2006;21:E9.Google Scholar
  48. 48.
    Ghorbanian S, Jaulim A, Chatziralli IP. Diagnosis and treatment of coats’ disease: a review of the literature. Ophthalmologica. 2012;227:175–82.CrossRefGoogle Scholar
  49. 49.
    Goldberg MF. Persistent fetal vasculature (PFV): an integrated interpretation of signs and symptoms associated with persistent hyperplastic primary vitreous (PHPV). LIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 1997;124:587–626.CrossRefGoogle Scholar
  50. 50.
    Piccolino FC, Borgia L. Central serous chorioretinopathy and indocyanine angiography. Retina. 1994;14:231–42.CrossRefGoogle Scholar
  51. 51.
    Ciardella AP, Donsoff IM, Huang SJ, et al. Polypoidal choroidal vasculopathy. Surv Ophthalmol. 2004;49:25–37.CrossRefGoogle Scholar
  52. 52.
    Gündüz K, Çöndü G, Shields CL. Acute exudative polymorphous paraneoplastic vitelliform maculopathy managed with intravitreal aflibercept. Ophthalmic Surg Lasers Imaging Retina. 2017;48:844–50.CrossRefGoogle Scholar
  53. 53.
    Reddy S, Finger PT. Unilateral diffuse uveal melanocytic proliferation (DUMP). Br J Ophthalmol. 2007;91:1726–7.CrossRefGoogle Scholar
  54. 54.
    Gündüz K, Shields CL. Radiation retinopathy and papillopathy. In: Yanoff M, Duker J, editors. Ophthalmology. 4th ed. Philadelphia: Elsevier Saunders Co; 2014. p. 565–9.Google Scholar
  55. 55.
    Veverka KK, AbouChelade JE, Iezzi R Jr, et al. Noninvasive grading of radiation retinopathy: the use of optical coherence tomography angiography. Retina. 2015;35:2400–10.Google Scholar
  56. 56.
    Shields CL, Say EA, Samara WA, et al. Optical coherence tomography angiography of the macula after plaque radiotherapy of choroidal melanoma: comparison of irradiated versus nonirradiated eyes in 65 patients. Retina. 2016;36:1493–505.CrossRefGoogle Scholar
  57. 57.
    Matet A, Daruich A, Zografos L. Radiation maculopathy after proton beam therapy for uveal melanoma: optical coherence tomography angiography alterations influencing visual acuity. Invest Ophthalmol Vis Sci. 2017;58:3851–61.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kaan Gündüz
    • 1
  • Yağmur Seda Yeşiltaş
    • 1
  1. 1.Department of OphthalmologyAnkara University Faculty of MedicineAnkaraTurkey

Personalised recommendations