Advertisement

Similarities Between Dynamics at Atomic and Cosmological Scales

  • Maricel Agop
  • Alina GavriluţEmail author
  • Gabriel Crumpei
Chapter

Abstract

Since the non-differentiability becomes a fundamental property of the motions space [1, 2, 3, 4], a correspondence between the interaction processes and multifractality of the motion trajectories can be established. Then, for all scale resolutions, the geodesics equations (in the form of the Schrödinger equation of fractal type) and some applications (similarities between dynamics at atomic and cosmic scales) are obtained.

References

  1. 1.
    B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman Publishers, New York, 1982)zbMATHGoogle Scholar
  2. 2.
    M.F. Barnsley, Fractals Everywhere (Morgan Kaufmann Publisher, San Francisco, 1993)zbMATHGoogle Scholar
  3. 3.
    R. Badii, A. Politi, Complexity: Hierarchical Structures and Scaling in Physics (Cambridge University Press, Cambridge, 1997)CrossRefGoogle Scholar
  4. 4.
    M. Mitchell, Complexity: A Guided Tour (Oxford University Press, Oxford, 2009)zbMATHGoogle Scholar
  5. 5.
    L. Nottale, Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics (Imperial College Press, London, 2011)CrossRefGoogle Scholar
  6. 6.
    I. Mercheş, M. Agop, Differentiability and Fractality in Dynamics of Physical Systems (World Scientific Publisher, Singapore, 2016)zbMATHGoogle Scholar
  7. 7.
    J. Cresson, Non-differentiable transformations on \(\mathbb{R} ^{n}\). Int. J. Geom. Meth. Mod. Phys. 03, 13–45 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Florea, I. Dumitrache, Elemente şi Circuite Fluidice (in Romanian) (Romanian Academy Publishing House, Bucureşti, 1979)Google Scholar
  9. 9.
    P.C. Cristescu, Dinamici neliniare şi haos. Fundamente teoretice şi aplicaţii (in Romanian) (Romanian Academy Publishing House, Bucureşti, 2008)Google Scholar
  10. 10.
    S. Ţiţeica, Quantum Mechanics (Academic Press, Bucharest, 1984)Google Scholar
  11. 11.
    A.G. Agnese, R. Festa, Clues to discretization on the cosmic scale. Phys. Lett. A 227, 165–171 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    M. Mayor, D. Queloz, A Jupiter-Mass companion to a solar-type star. Nature 378, 355–359 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    Landolt-Börnstein, Internal Structure and Dynamics of Galaxies, Handbook VI/2C.9.2 (Springer, Berlin, 1982)Google Scholar
  14. 14.
    S.E. Schneider, E.E. Salpeter, Velocity differences in binary galaxies. I. Suggestions for a non-monotonic, two-component distribution. Astrophys. J. 385, 32–48 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    W.J. Cocke, Statistical methods for investigating periodicities in double-galaxy redshifts. Astrophys. J. 393, 59–67 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    W.G. Tifft, W.J. Cocke, Global redshift quantization. Astrophys. J. 287, 492–507 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    B.N. Guthrie, W.M. Napier, Mon. Not. R. Astron. Soc. 253, 533 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    J. Argyris, C. Marin, C. Ciubotariu, Physics of Gravitation and the Universe (Spiru Haret Publishing House, Iaşi, 2002 and Tehnica-Info Publishing House, Chişinău, Vol. II, 2002)Google Scholar
  19. 19.
    H.E. White, Pictorial representations of the electron cloud for hydrogen-like atoms. Phys. Rev. 37, 1416 (1931)ADSCrossRefGoogle Scholar
  20. 20.
    M. DerSarkissian, Does wave-particle duality apply to galaxies? Lett Nuovo Cimento 40(13), 390–394 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    M. Agop, H. Matsuzawa, I. Oprea, R. Vlad, C. Sandu, CGh Buzea, Some implications of the gravitomagnetic field in fractal spacetime theory. Aust. J. Phys. 53, 217 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maricel Agop
    • 1
  • Alina Gavriluţ
    • 2
    Email author
  • Gabriel Crumpei
    • 3
  1. 1.Department of PhysicsGheorghe Asachi Technical University of IaşiIaşiRomania
  2. 2.Faculty of MathematicsAlexandru Ioan Cuza University of IaşiIaşiRomania
  3. 3.Faculty of Psychology and Education SciencesAlexandru Ioan Cuza University of IaşiIaşiRomania

Personalised recommendations