Advertisement

Theoretical Modeling of the Interaction Between Two Complex Space Charge Structures in Low-Temperature Plasma

  • Stefan Irimiciuc
  • Dan-Gheorghe DimitriuEmail author
  • Maricel Agop
Chapter

Abstract

A theoretical model was developed, able to explain complex phenomena that take place at the interaction between two complex space charge structures in low-temperature discharge plasma, leading to the self-modulation of the discharge current. The model is based on the presumption of non-differentiability of both the physical variables and the dynamics equations, which impose their dependence on the scale resolution. The dynamics of the electrons is described by a forced damped oscillating system, being analyzed the response of the global discharge current to different changes in the scale resolution, forcing frequency and damping coefficient. Experimental results were presented, which are in good agreement with the results provided by the theoretical model.

Keywords

Fractal Discharge plasma Self-modulation 

Notes

Acknowledgements

This work was supported by a grant of Romanian Ministry of Research and Innovation, CNCS—UEFISCDI, project number PN-III-P4-ID-PCE-2016-0355, within PNCDI III.

References

  1. 1.
    V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd edn. (Springer, New York, USA, 1989)CrossRefGoogle Scholar
  2. 2.
    R. Badii, A. Politi, Complexity: Hierarchical Structure and Scaling in Physics (Cambridge University Press, Cambridge, UK, 1997)CrossRefGoogle Scholar
  3. 3.
    V. Barlescu, M. Agop, M. Craus, Computational properties of a fractal medium. Int. J. Quantum Inf. 12, 1450022 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    M.F. Barnsley, Fractals Everywhere, 2nd edn. (Academic Press, Cambridge, MA, USA, 1993)zbMATHGoogle Scholar
  5. 5.
    A.V. Bitsazde, Equations of Mathematical Physics (Mir Publishers, Moscow, Russia, 1980)Google Scholar
  6. 6.
    J.F. Cariñena, A. Ramos, Integrability of Riccati equations from a group-theoretical viewpoint. Int. J. Mod. Phys. A 14, 1935–1951 (1999)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, 3rd edn. (Springer International Publishing, Cham, Switzerland, 2016)CrossRefGoogle Scholar
  8. 8.
    C.P. Cristescu, Nonlinear dynamics and chaos. Theoretical Fundaments and Applications (Romanian Academy Publishing House, Bucharest, Romania (in Romanian), 2008)Google Scholar
  9. 9.
    L. de Broglie, La Thermodynamique de la Particule Isolée (Gauthier-Villars, Paris, France, 1964)zbMATHGoogle Scholar
  10. 10.
    H.H. Denman, Time-translation invariance for certain dissipative classical systems. Am. J. Phys. 36, 516–519 (1968)ADSCrossRefGoogle Scholar
  11. 11.
    D.G. Dimitriu, S.A. Irimiciuc, S. Popescu, M. Agop, C. Ionita, R.W. Schrittwieser, On the interaction between two fireballs in low temperature plasma. Phys. Plasmas 22, 113511 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    K. Falconer, Fractal Geometry: Mathematical Foundations and Applications (John Wiley & Sons, Chichester, UK, 2014)zbMATHGoogle Scholar
  13. 13.
    H.M. Hastings, G. Sugihara, Fractals: A User’s Guide for the Natural Sciences (Oxford University Press, Oxford, UK, 1994)zbMATHGoogle Scholar
  14. 14.
    R.C. Hilborn, Chaos and Nonlinear Dynamics: An introduction for Scientists and Engineers, 2nd edn. (Oxford University Press, Oxford, UK, 2000)CrossRefGoogle Scholar
  15. 15.
    H. Ioannidou, Statistical interpretation of the Planck constant and the uncertainty relation. Int. J. Theor. Phys. 22, 1129–1139 (1983)CrossRefGoogle Scholar
  16. 16.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, USA, 1999)zbMATHGoogle Scholar
  17. 17.
    R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. le Méhauté, Fractal Geometry: Theory and Applications (CRC Press, Boca Raton, Florida, USA, 1991)zbMATHGoogle Scholar
  19. 19.
    P. Libermann, C.M. Marle, Symplectic Geometry and Analytical Mechanics (D. Reidel Publishing Company, Dordrecht, Holland, 1987)CrossRefGoogle Scholar
  20. 20.
    B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman and Company, New York, USA, 1982)Google Scholar
  21. 21.
    N. Mazilu, M. Agop, At the Crossroads of Theories (Between Newton and Eistein – Barbilian Universe, Ars Longa, Iasi, Romania (in Romanian), 2010)Google Scholar
  22. 22.
    I. Merches, M. Agop, Differentiability and Fractality in Dynamics of Physical Systems (World Scientific, Singapore, 2016)zbMATHGoogle Scholar
  23. 23.
    M. Mitchell, Complexity: A Guided Tour (Oxford University Press, Oxford, UK, 2009)zbMATHGoogle Scholar
  24. 24.
    A.I. Morozov, Introduction to Plasma Dynamics (CRC Press, Boca Raton, Florida, USA, 2012)Google Scholar
  25. 25.
    O. Niculescu, D.G. Dimitriu, V.P. Paun, P.D. Matasaru, D. Scurtu, M. Agop, Experimental and theoretical investigations of a plasma fireball dynamics. Phys. Plasmas 17, 042305 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    L. Nottale, Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity (World Scientific, Singapore, 1993)CrossRefGoogle Scholar
  27. 27.
    L. Nottale, Scale Relativity and Fractal Time-Space: A New Approach to Unifying Relativity and Quantum Mechanics (Imperial College Press, London, UK, 2011)CrossRefGoogle Scholar
  28. 28.
    R.W. Schrittwieser, C. Ionita, C.T. Teodorescu-Soare, O. Vasilovici, S. Gurlui, S. Irimiciuc, D.G. Dimitriu, Spectral and electrical diagnosis of complex space-charge structures excited by a spherical grid cathode with orifice. Phys. Scr. 92, 044401 (2017)CrossRefGoogle Scholar
  29. 29.
    R.L. Stenzel, J.M. Urrutia, Oscillating plasma bubble. I. Basic properties and instabilities. Phys. Plasmas 19, 082105 (2012a)Google Scholar
  30. 30.
    R.L. Stenzel, J.M. Urrutia, Oscillating plasma bubble. II. Pulsed experiments. Phys. Plasmas 19, 082106 (2012b)ADSCrossRefGoogle Scholar
  31. 31.
    R.L. Stenzel, J.M. Urrutia, Oscillating plasma bubble. III. Internal electron sources and sinks. Phys. Plasmas 19, 082107 (2012c)Google Scholar
  32. 32.
    R.L. Stenzel, J.M. Urrutia, Oscillating plasma bubble. IV. Grids, geometry, and gradients. Phys Plasmas 19, 082108 (2012d)Google Scholar
  33. 33.
    D. Stoler, Equivalence classes of minimum uncertainty packets. Phys. Rev. D 1, 3217–3219 (1970)ADSCrossRefGoogle Scholar
  34. 34.
    C.T. Teodorescu-Soare, D.G. Dimitriu, C. Ionita, R.W. Schrittwieser, Experimental investigations of the nonlinear dynamics of a complex space-charge configuration inside and around a grid cathode with hole. Phys. Scr. 91, 034002 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    A. Zangwill, Modern Electrodynamics (Cambridge University Press, Cambridge, UK, 2013)zbMATHGoogle Scholar
  36. 36.
    M.I. Zelikin, in Control Theory and Optimization I: Homogeneous Spaces and the Riccati Equation in the Calculus of Variations. Encyclopedia of Mathematical Sciences, vol. 86 (Springer, Berlin, Germany, 2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Stefan Irimiciuc
    • 1
  • Dan-Gheorghe Dimitriu
    • 1
    Email author
  • Maricel Agop
    • 2
  1. 1.Faculty of Physics“Alexandru Ioan Cuza” UniversityIasiRomania
  2. 2.Department of Physics, Faculty of Machine Manufacturing and Industrial Management“Gheorghe Asachi” Technical UniversityIasiRomania

Personalised recommendations