Advertisement

From Modular Forms to Differential Equations for Feynman Integrals

  • Johannes Broedel
  • Claude DuhrEmail author
  • Falko Dulat
  • Brenda Penante
  • Lorenzo Tancredi
Chapter
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

In these proceedings we discuss a representation for modular forms that is more suitable for their application to the calculation of Feynman integrals in the context of iterated integrals and the differential equation method. In particular, we show that for every modular form we can find a representation in terms of powers of complete elliptic integrals of the first kind multiplied by algebraic functions. We illustrate this result on several examples. In particular, we show how to explicitly rewrite elliptic multiple zeta values as iterated integrals over powers of complete elliptic integrals and rational functions, and we discuss how to use our results in the context of the system of differential equations satisfied by the sunrise and kite integrals.

Notes

Acknowledgements

We would like to thank the “Kolleg Mathematik und Physik Berlin” for supporting the workshop “Elliptic integrals, elliptic functions and modular forms in quantum field theory”. This research was supported by the ERC grant 637019 “MathAm”, and the U.S. Department of Energy (DOE) under contract DE-AC02-76SF00515.

References

  1. 1.
  2. 2.
  3. 3.
    J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, E. Imamoglu, M. van Hoeij, A. von Manteuffel, C.G. Raab, C.S. Radu, C. Schneider, Iterative and iterative-noniterative integral solutions in 3-loop massive QCD calculations. PoS(RADCOR2017)069, arXiv:1711.09742 [hep-ph]
  4. 4.
    J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.S. Radu, C. Schneider, Iterated elliptic and hypergeometric integrals for Feynman diagrams. J. Math. Phys. 59(6), 062305 (2018), arXiv:1706.01299 [hep-th]MathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Adams, E. Chaubey, S. Weinzierl, Analytic results for the planar double box integral relevant to top-pair production with a closed top loop (2018)Google Scholar
  6. 6.
    L. Adams, E. Chaubey, S. Weinzierl, The planar double box integral for top pair production with a closed top loop to all orders in the dimensional regularisation parameter (2018)Google Scholar
  7. 7.
    L. Adams, S. Weinzierl, Feynman integrals and iterated integrals of modular forms (2017)Google Scholar
  8. 8.
    L. Adams, S. Weinzierl, The \(\varepsilon \)-form of the differential equations for Feynman integrals in the elliptic case. Phys. Lett. B 781, 270–278 (2018)Google Scholar
  9. 9.
    S. Bloch, P. Vanhove, The elliptic dilogarithm for the sunset graph. J. Number Theor. 148, 328–364 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello, V.A. Smirnov, Two-loop planar master integrals for Higgs\(\rightarrow 3\) partons with full heavy-quark mass dependence. JHEP 12, 096 (2016)Google Scholar
  11. 11.
    J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series (2018)Google Scholar
  12. 12.
    J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves I: general formalism (2017)Google Scholar
  13. 13.
    J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral (2017)Google Scholar
  14. 14.
    J. Broedel, C.R. Mafra, N. Matthes, O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes. JHEP 07, 112 (2015)Google Scholar
  15. 15.
    J. Broedel, N. Matthes, G. Richter, O. Schlotterer, Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes. J. Phys. A 51(28), 285401 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Broedel, N. Matthes, O. Schlotterer, Relations between elliptic multiple zeta values and a special derivation algebra. J. Phys. A 49(15), 155203 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    J. Broedel, O. Schlotterer, F. Zerbini, From elliptic multiple zeta values to modular graph functions: open and closed strings at one loop (2018)Google Scholar
  18. 18.
    R. Broker, K. Lauter, A.V. Sutherland, Modular polynomials via isogeny volcanoes. Math. Comput. 81, 1201–1231 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    F. Brown, Multiple modular values and the relative completion of the fundamental group of \(M_{1,1}\) (2014)Google Scholar
  20. 20.
    F. Brown, A. Levin, Multiple elliptic polylogarithms (2011)Google Scholar
  21. 21.
    J.H. Bruinier, K. Ono, A.V. Sutherland, Class polynomials for nonholomorphic modular functions. J. Number Theory 161, 204–229 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    F. Diamond, B. Sturmfels, J. Shurman, A First Course in Modular Forms. Graduate Texts in Mathematics (Springer Science and Business Media, Berlin, 2005)Google Scholar
  23. 23.
    T. Gehrmann, E. Remiddi, Differential equations for two loop four point functions. Nucl. Phys. B 580, 485–518 (2000)MathSciNetCrossRefGoogle Scholar
  24. 24.
    J.M. Henn, Multiloop integrals in dimensional regularization made simple. Phys. Rev. Lett. 110, 251601 (2013)Google Scholar
  25. 25.
    A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation. Phys. Lett. B 254, 158–164 (1991)MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Laporta, E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph. Nucl. Phys. B 704, 349–386 (2005)MathSciNetCrossRefGoogle Scholar
  27. 27.
    R.S. Maier, On rationally parametrized modular equations. ArXiv Mathematics e-prints (2006)Google Scholar
  28. 28.
    A. Primo, L. Tancredi, Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph. Nucl. Phys. B 921, 316–356 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Primo, L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations. Nucl. Phys. B 916, 94–116 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    E. Remiddi, Differential equations for Feynman graph amplitudes. Nuovo Cim. A 110, 1435–1452 (1997)Google Scholar
  31. 31.
    E. Remiddi, L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral. Nucl. Phys. B 907, 400–444 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    E. Remiddi, L. Tancredi, An elliptic generalization of multiple polylogarithms. Nucl. Phys. B 925, 212–251 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    A. von Manteuffel, L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms. JHEP 06, 127 (2017)Google Scholar
  34. 34.
    A. Weil, Elliptic Functions According to Eisenstein and Kronecker. Classics in Mathematics (Springer, Berlin, 1999)Google Scholar
  35. 35.
    Y. Yifan, Transformation formulas for generalized dedekind eta functions. Bull. Lond. Math. Soc. 36(5), 671–682 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Johannes Broedel
    • 1
  • Claude Duhr
    • 2
    • 3
    Email author
  • Falko Dulat
    • 4
  • Brenda Penante
    • 2
  • Lorenzo Tancredi
    • 2
  1. 1. Institut für Mathematik und Institut für PhysikHumboldt-Universität zu Berlin, IRIS AdlershofBerlinGermany
  2. 2.Theoretical Physics DepartmentCERNGenevaSwitzerland
  3. 3.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-La-NeuveBelgium
  4. 4.SLAC National Accelerator LaboratoryStanford UniversityStanfordUSA

Personalised recommendations