Advertisement

Analytic Continuation of the Kite Family

  • Christian BognerEmail author
  • Armin Schweitzer
  • Stefan Weinzierl
Chapter
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

We consider results for the master integrals of the kite family, given in terms of ELi-functions which are power series in the nome q of an elliptic curve. The analytic continuation of these results beyond the Euclidean region is reduced to the analytic continuation of the two period integrals which define q. We discuss the solution to the latter problem from the perspective of the Picard–Lefschetz formula.

References

  1. 1.
    J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.S. Radu, C. Schneider, Iterated elliptic and hypergeometric integrals for feynman diagrams. J. Math. Phys. 59(6), 062305 (2018).  https://doi.org/10.1063/1.4986417. arXiv:1706.01299 [hep-th]MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Abreu, R. Britto, C. Duhr, E. Gardi, Cuts from residues: the one-loop case. JHEP 1706, 114 (2017), arXiv:1702.03163 [hep-th]
  3. 3.
    S. Abreu, R. Britto, C. Duhr, E. Gardi, Algebraic structure of cut feynman integrals and the diagrammatic coaction. Phys. Rev. Lett. 119(5), 051601 (2017), arXiv:1703.05064 [hep-th]
  4. 4.
    S. Abreu, R. Britto, C. Duhr, E. Gardi, Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case. JHEP 1712, 090 (2017), arXiv:1704.07931 [hep-th]
  5. 5.
    L. Adams, C. Bogner, A. Schweitzer, S. Weinzierl, The kite integral to all orders in terms of elliptic polylogarithms. J. Math. Phys. 57, 122302 (2016), arXiv:1607.01571 [hep-ph]MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. Adams, C. Bogner, S. Weinzierl, The two-loop sunrise graph with arbitrary masses. J. Math. Phys. 54, 052303 (2013), arXiv:1302.7004 [hep-ph]MathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Adams, C. Bogner, S. Weinzierl, The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms. J. Math. Phys. 55(10), 102301 (2014), arXiv:1405.5640, [hep-ph]MathSciNetCrossRefGoogle Scholar
  8. 8.
    L. Adams, C. Bogner, S. Weinzierl, The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case. J. Math. Phys. 56(7), 072303 (2015), arXiv:1504.03255 [hep-ph]MathSciNetCrossRefGoogle Scholar
  9. 9.
    L. Adams, C. Bogner, S. Weinzierl, The iterated structure of the all-order result for the two-loop sunrise integral. J. Math. Phys. 57(3), 032304 (2016), arXiv:1512.05630 [hep-ph]MathSciNetCrossRefGoogle Scholar
  10. 10.
    L. Adams, E. Chaubey, S. Weinzierl, The planar double box integral for top pair production with a closed top loop to all orders in the dimensional regularisation parameter, arXiv:1804.11144 [hep-ph]
  11. 11.
    L. Adams, E. Chaubey, S. Weinzierl, Analytic results for the planar double box integral relevant to top-pair production with a closed top loop, arXiv:1806.04981 [hep-ph]
  12. 12.
    L. Adams, S. Weinzierl, Feynman integrals and iterated integrals of modular forms, arXiv:1704.08895 [hep-ph]
  13. 13.
    L. Adams, S. Weinzierl, The \(\epsilon \)-form of the differential equations for Feynman integrals in the elliptic case. Phys. Lett. B 781, 270–278 (2018), arXiv:1802.05020 [hep-ph]
  14. 14.
    S. Bloch, M. Kerr, P. Vanhove, A Feynman integral via higher normal functions. Compos. Math. 151, 2329–2375 (2015), arXiv:1406.2664 [hep-th]MathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Bloch, M. Kerr, P. Vanhove, Local mirror symmetry and the sunset Feynman integral. Adv. Theor. Math. Phys. 21, 1373–1453 (2017), arXiv:1601.08181 [hep-th]MathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Bloch, D. Kreimer, Cutkosky rules and outer space, arXiv:1512.01705 [hep-th]
  17. 17.
    S. Bloch, P. Vanhove, The elliptic dilogarithm for the sunset graph. J. Number Theory 148, 328–364 (2015), arXiv:1309.5865 [hep-th]MathSciNetCrossRefGoogle Scholar
  18. 18.
    C. Bogner, A. Schweitzer, S. Weinzierl, Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral. Nucl. Phys. B 922, 528–550 (2017), arXiv:1705.08952 [hep-ph]MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk, T. Zirke, SecDec-, 3.0: numerical evaluation of multi-scale integrals beyond one loop. Comput. Phys. Commun. 196, 470–491, (2015), arXiv:1502.06595 [hep-ph]CrossRefGoogle Scholar
  20. 20.
    J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism. JHEP 1805, 093 (2018), arXiv:1712.07089 [hep-th]
  21. 21.
    J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral. Phys. Rev. D 97(11), 116009 (2018), arXiv:1712.07095 [hep-ph]
  22. 22.
    J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series, arXiv:1803.10256 [hep-th]
  23. 23.
    J. Broedel, C.R. Mafra, N. Matthes, O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes. JHEP 1507, 112 (2015), arXiv:1412.5535 [hep-th]
  24. 24.
    J. Broedel, N. Matthes, O. Schlotterer, Relations between elliptic multiple zeta values and a special derivation algebra. J. Phys. A49(15), 155203 (2016), arXiv:1507.02254 [hep-th]MathSciNetCrossRefGoogle Scholar
  25. 25.
    J. Broedel, N. Matthes, G. Richter, O. Schlotterer, Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes. J. Phys. A51(28), 285401 (2018), arXiv:1704.03449 [hep-th]MathSciNetCrossRefGoogle Scholar
  26. 26.
    J. Broedel, O. Schlotterer, F. Zerbini, From elliptic multiple zeta values to modular graph functions: open and closed strings at one loop, arXiv:1803.00527 [hep-th]
  27. 27.
    J. Carlson, S. Müller-Stach, C. Peters, Period Mappings and Period Domains (Cambridge University Press, Cambridge, 2003)Google Scholar
  28. 28.
    W. Ebeling, Funktionentheorie, Differentialtopologie und Singularit"aten (Vieweg Verlag, 2001)Google Scholar
  29. 29.
    D. Fotiadi, M. Froissart, J. Lascoux, F. Pham, Applications of an isotopy theorem. Topology 4, 159–191 (1965)MathSciNetCrossRefGoogle Scholar
  30. 30.
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Lett. 5, 497–516 (1998), arXiv:1105.2076 [math.AG]MathSciNetCrossRefGoogle Scholar
  31. 31.
    A.B. Goncharov, Multiple, polylogarithms and mixed tate motives (2001), arXiv:math.AG/0103059
  32. 32.
    J.M. Henn, Multiloop integrals in dimensional regularization made simple. Phys. Rev. Lett. 110, 251601 (2013), arXiv:1304.1806 [hep-th]
  33. 33.
    E. D’Hoker, M.B. Green, O. Gurdogan, P. Vanhove, Modular Graph Functions. Commun. Num. Theor. Phys. 11, 165–218 (2017), arXiv:1512.06779 [hep-th]MathSciNetCrossRefGoogle Scholar
  34. 34.
    R.C. Hwa, V.L. Teplitz, Homology and Feynman Integrals (W.A. Benjamin Inc, New York, 1966)zbMATHGoogle Scholar
  35. 35.
    S. Lefschetz, L’analysis situs et la géometrie algébrique (Gauthier-Villars, Paris, 1924)zbMATHGoogle Scholar
  36. 36.
    J. Leray, Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy, III). Bull. Soc. Math. France 87, 81–180 (1959)MathSciNetCrossRefGoogle Scholar
  37. 37.
    A. von Manteuffel, L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms. JHEP 1706, 127 (2017), arXiv:1701.05905 [hep-ph]
  38. 38.
    F. Pham, Formules de Picard-Lefschetz généralisées et ramification des intégrales. Bull. Soc. Math. France 93, 333–367 (1965)MathSciNetCrossRefGoogle Scholar
  39. 39.
    F. Pham, Intégrales Singulières. EDP Sciences (CNRS Éditions, Paris, 2005)Google Scholar
  40. 40.
    A. Primo, L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations. Nucl. Phys. B 916, 94–116 (2017), arXiv:1610.08397 [hep-ph]MathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Primo, L. Tancredi, Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph. Nucl. Phys. B921, 316–356 (2017), arXiv:1704.05465 [hep-ph]MathSciNetCrossRefGoogle Scholar
  42. 42.
    E. Remiddi, L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral. Nucl. Phys. B907, 400–444 (2016), arXiv:1602.01481 [hep-ph]MathSciNetCrossRefGoogle Scholar
  43. 43.
    E. Remiddi, L. Tancredi, An elliptic generalization of multiple polylogarithms. Nucl. Phys. B 925, 212–25 (2017), arXiv:1709.03622 [hep-ph]MathSciNetCrossRefGoogle Scholar
  44. 44.
    R. Thom, Les singularités des applications différentiables. Ann. Inst. Fourier 6, 43–87 (1956)MathSciNetCrossRefGoogle Scholar
  45. 45.
    H. Zoladek, The Monodromy Group, Monografie Matematyczne, vol. 67 (Birkhäuser Verlag, Switzerland 2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christian Bogner
    • 1
    Email author
  • Armin Schweitzer
    • 2
  • Stefan Weinzierl
    • 3
  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Institut für Theoretische Physik, ETH ZürichZürichSwitzerland
  3. 3.PRISMA Cluster of Excellence, Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations