Eta Quotients and Rademacher Sums
Abstract
Eta quotients on \(\varGamma _0(6)\) yield evaluations of sunrise integrals at 2, 3, 4 and 6 loops. At 2 and 3 loops, they provide modular parametrizations of inhomogeneous differential equations whose solutions are readily obtained by expanding in the nome q. Atkin–Lehner transformations that permute cusps ensure fast convergence for all external momenta. At 4 and 6 loops, on-shell integrals are periods of modular forms of weights 4 and 6 given by Eichler integrals of eta quotients. Weakly holomorphic eta quotients determine quasi-periods. A Rademacher sum formula is given for Fourier coefficients of an eta quotient that is a Hauptmodul for \(\varGamma _0(6)\) and its generalization is found for all levels with genus 0, namely for \(N = 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25\). There are elliptic obstructions at \(N = 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49,\) with genus 1. We surmount these, finding explicit formulas for Fourier coefficients of eta quotients in thousands of cases. We show how to handle the levels \(N=22, 23, 26, 28, 29, 31, 37, 50\), with genus 2, and the levels \(N=30,33,34,35,39,40,41,43,45,48,64\), with genus 3. We also solve examples with genera 4, 5, 6, 7, 8, 13.
Notes
Acknowledgements
The second author thanks KMPB for hospitality and colleagues at conferences in Zeuthen, Bonn, St. Goar and Les Houches for advice and encouragement that emboldened our joint effort to tackle eta quotients beyond the remit of genus zero so far encountered in massive Feynman diagrams. We especially thank Johannes Blümlein for his question on the possibility of obtaining an explicit formula for Fourier coefficients of the Hauptmodul of \(\varGamma _0(6)\) and Freeman Dyson for urging us to try to emulate the notable work by Rademacher on partition numbers [29]. We thank Yajun Zhou and an anonymous referee for helpful suggestions that improved our presentation.
References
- 1.J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.-S. Radu, C. Schneider, Iterated elliptic and hypergeometric integrals for Feynman diagrams. J. Math. Phys. 59(6), 062305 (2018), arXiv:1706.01299MathSciNetCrossRefGoogle Scholar
- 2.D.H. Bailey, J.M. Borwein, D. Broadhurst, M.L. Glasser, Elliptic integral evaluations of Bessel moments. J. Phys. A 41, 205203 (2008), arXiv:0801.0891
- 3.F. Beukers, Irrationality proofs using modular forms. Journées arithmétiques de Besançon, Astérisque 147–148, 271–283 (1987)MathSciNetzbMATHGoogle Scholar
- 4.S. Bloch, P. Vanhove, The elliptic dilogarithm for the sunset graph. J. Number Theory 148, 328–364 (2015), arXiv:1309.5865MathSciNetCrossRefGoogle Scholar
- 5.S. Bloch, M. Kerr, P. Vanhove, A Feynman integral via higher normal functions. Compos. Math. 151, 2329–2375 (2015), arXiv:1406.2664MathSciNetCrossRefGoogle Scholar
- 6.C. Bogner, A. Schweitzer, S. Weinzierl, Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral. Nucl. Phys. B 922, 528–550 (2017), arXiv:1705.08952MathSciNetCrossRefGoogle Scholar
- 7.D. Broadhurst, Multiple zeta values and modular forms in quantum field theory, in Computer Algebra in Quantum Field Theory. Texts and Monographs in Symbolic Computation, ed. by C. Schneider, J. Blümlein (Springer, Vienna, 2013), pp. 33–73zbMATHGoogle Scholar
- 8.D. Broadhurst, Feynman integrals, L-series and Kloosterman moments, Commun. Number Theory Phys. 10, 527–569 (2016), arXiv:1604.03057MathSciNetCrossRefGoogle Scholar
- 9.D. Broadhurst, A. Mellit, Perturbative quantum field theory informs algebraic geometry, in Loops and Legs in Quantum Field Theory, PoS (LL2016) 079 (2016)Google Scholar
- 10.D. Broadhurst, O. Schnetz, Algebraic geometry informs perturbative quantum field theory, in Loops and Legs in Quantum Field Theory, PoS (LL2014) 078 (2014)Google Scholar
- 11.D.J. Broadhurst, The master two-loop diagram with masses. Z. Phys. C 47, 115–124 (1990)CrossRefGoogle Scholar
- 12.D.J. Broadhurst, J. Fleischer, O.V. Tarasov, Two-loop two-point functions with masses: asymptotic expansions and Taylor series, in any dimension. Z. Phys. C 60, 287–301 (1993), arXiv:hep-ph/9304303
- 13.F. Brown, A class of non-holomorphic modular forms III: real analytic cusp forms for \(SL_2(Z)\), arXiv:1710.07912
- 14.F. Brown, O. Schnetz, A K3 in \(\phi ^4\). Duke Math. J. 161, 1817–1862 (2012), arXiv:1006.4064MathSciNetCrossRefGoogle Scholar
- 15.H.H. Chan, W. Zudilin, New representations for Apéry-like sequences. Mathematika 56, 107–117 (2010)CrossRefGoogle Scholar
- 16.H. Cohen, Tutorial for modular forms in Pari/GP (2018), http://pari.math.u-bordeaux.fr/pub/pari/manuals/2.10.0/tutorial-mf.pdf
- 17.J.F.R. Duncan, M.J. Griffin, K. Ono, Moonshine. Res. Math. Sci. 2, 11 (2015), arXiv:1411.6571
- 18.M. Eichler, D. Zagier, The Theory of Jacobi Forms. Progress in Mathematics, vol. 55 (Birkhäuser, Boston, 1985)CrossRefGoogle Scholar
- 19.N. Elkies, The automorphism group of the modular curve \(X_0(63)\). Compos. Math. 74, 203–208 (1990)Google Scholar
- 20.G.S. Joyce, On the simple cubic lattice Green function. Philos. Trans. R. Soc. Math. Phys. Sci. 273, 583–610 (1973)MathSciNetCrossRefGoogle Scholar
- 21.P. Kleban, D. Zagier, Crossing probabilities and modular forms. J. Stat. Phys. 113, 431–454 (2003)MathSciNetCrossRefGoogle Scholar
- 22.M.I. Knopp, Rademacher on \(J(\tau )\), Poincaré series of nonpositive weights and the Eichler cohomology. Not. Am. Math. Soc. 37, 385–393 (1990)Google Scholar
- 23.S. Laporta, High-precision calculation of the 4-loop contribution to the electron \(g-2\) in QED. Phys. Lett. B 772, 232–238 (2017), arXiv:1704.06996
- 24.R.S. Maier, On rationally parametrized modular equations. J. Ramanujan Math. Soc. 24, 1–73 (2009), arXiv:math/0611041
- 25.G. Martin, Dimensions of the spaces of cusp forms and newforms on \(\Gamma _0(N)\) and \(\Gamma _1(N)\). J. Number Theory 112, 298–331 (2005), arXiv:math/0306128
- 26.H. Petersson, Über die Entwicklungskoeffizienten der automorphen Formen. Acta Math. 58, 169–215 (1932)MathSciNetCrossRefGoogle Scholar
- 27.H. Rademacher, The Fourier coefficients of the modular invariant \(J(\tau )\). Am. J. Math. 60, 501–512 (1938)Google Scholar
- 28.H. Rademacher, The Fourier series and the functional equation of the absolute modular invariant \(J(\tau )\). Am. J. Math. 61, 237–248 (1939)Google Scholar
- 29.H. Rademacher, On the expansion of the partition function in a series. Ann. Math. 44, 416–422 (1943)MathSciNetCrossRefGoogle Scholar
- 30.A. Sabry, Fourth order spectral functions for the electron propagator. Nucl. Phys. 33, 401–430 (1962)MathSciNetCrossRefGoogle Scholar
- 31.N.-P. Skoruppa, D. Zagier, Jacobi forms and a certain space of modular forms. Invent. Math. 94(1988), 113–146 (1988)MathSciNetCrossRefGoogle Scholar
- 32.Y. Yang, Transformation formulas for generalized Dedekind eta functions. Bull. Lond. Math. Soc. 36, 671–682 (2004)MathSciNetCrossRefGoogle Scholar
- 33.Y. Yang, Defining equations of modular curves. Adv. Math. 204, 481–508 (2006)MathSciNetCrossRefGoogle Scholar
- 34.Y. Zhou, Hilbert transforms and sum rules of Bessel moments. Ramanujan J. (2017). https://doi.org/10.1007/s11139-017-9945-y, arXiv:1706.01068MathSciNetCrossRefGoogle Scholar
- 35.Y. Zhou, Wick rotations, Eichler, integrals, and multi-loop Feynman diagrams. Commun. Number Theory Phys. 12, 127–192 (2018), arXiv:1706.08308MathSciNetCrossRefGoogle Scholar
- 36.Y. Zhou, Wronskian, factorizations and Broadhurst-Mellit determinant formulae. Commun. Number Theory Phys. 12, 355–407 (2018), arXiv:1711.01829MathSciNetCrossRefGoogle Scholar
- 37.Y. Zhou, On Laporta’s 4-loop sunrise formulae, arXiv:1801.02182
- 38.Y. Zhou, Some algebraic and arithmetic properties of Feynman diagrams, to appear in this volume, arXiv:1801.05555