Advertisement

Organic and Inorganic Hybrid Diglycidyl/Tetraglycidyl Epoxy-Containing Nanocoatings on Mild Steel for Corrosion Protection and Antimicrobial Protection

  • D. Duraibabu
  • R. Manjumeena
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 25)

Abstract

Corrosion is constant and continuous deterioration of metal by chemical attack or reaction with its environment. Prevention is more practical and achievable than complete elimination. Protective coatings perform important functions based on the types of coatings/fillers. This review presents an overview of different types of diglycidyl/tetraglycidyl epoxy-containing organic–inorganic hybrid nanocoatings, based on their function, the substances used in coating formulations, and the nanoparticles/nanofillers used for the protection of mild steel surfaces from corrosion and microbial growth, viz., eco-friendly epoxy coatings, epoxy–inorganic compound coatings, epoxy–organic compound coatings, and organic–inorganic hybrid coatings.

Keywords

Diglyciyl epoxy Tetraglycidyl epoxy Surface modification Eco-friendly epoxy coating Inorganic coating Organic coating Organic–inorganic hybrid coating Salt spray Corrosion conformance Antimicrobial protection 

References

  1. Abd El-Fattah M, Ashraf M, El S, Ahmed Azzam M, Abdul-Raheim M, Hassan Hefni HH (2016) Improvement of corrosion resistance, antimicrobial activity, mechanical and chemical properties of epoxy coating by loading chitosan as a natural renewable resource. Prog Org Coat 101:288–296.  https://doi.org/10.1016/j.porgcoat.2016.09.002 CrossRefGoogle Scholar
  2. Allen NS, Edge M, Ortega A, Sandoval G, Liauw CM, Verran J, Stratton J, Mclntyre RB (2004) Degradation and stabilization of polymers and coatings: nano versus pigmentary titania particles. Polym Degrad Stab 85(3):927–946.  https://doi.org/10.1016/j.polymdegradstab.2003.09.024
  3. Al-Turaif HA (2010) Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Prog Org Coat 69(3):241–246.  https://doi.org/10.1016/j.porgcoat.2010.05.011 CrossRefGoogle Scholar
  4. Ananda Kumar S, Sankara Narayanan TSN (2002) Thermal properties of siliconized epoxy interpenetrating coatings. Prog Org Coat 45(4):323–330.  https://doi.org/10.1016/S0300-9440(02)00062-0 CrossRefGoogle Scholar
  5. Ananda Kumar S, Sasikumar A (2010) Studies on novel silicone/phosphorus/sulphur containing nano-hybrid epoxy anticorrosive and antifouling coatings. Prog Org Coat 68(3):189–200.  https://doi.org/10.1016/j.porgcoat.2010.02.005 CrossRefGoogle Scholar
  6. Ananda Kumar S, Balakrishnan T, Alagar M, Denchev Z (2006) Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings. Prog Org Coat 55(3):207–217.  https://doi.org/10.1016/j.porgcoat.2005.10.001 CrossRefGoogle Scholar
  7. Ashraf ESM, Abd El-Fattah M, Ahmed AM, Dardir MM, Magd Bader M (2016) Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating. Int J Biol Macromol 89:190–197.  https://doi.org/10.1016/j.ijbiomac.2016.04.043 CrossRefGoogle Scholar
  8. Batis G, Pantazopoulou P, Routoulas A (2003) Corrosion protection investigation of reinforcement by inorganic coating in the presence of alkanolamine-based inhibitor. Cem Concr Compos 25(3):371–377.  https://doi.org/10.1016/S0958-9465(02)00061-6 CrossRefGoogle Scholar
  9. Berndt ML, Berndt CC (2003) Corrosion: fundamentals, testing, and protection. In: Cramer SD, Covino BS Jr (eds) ASM handbook. ASM International, Materials Park, pp 803–813Google Scholar
  10. Champ M (2000) A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci Total Environ 258(1–2):21–71.  https://doi.org/10.1016/S0048-9697(00)00506-4 CrossRefGoogle Scholar
  11. Chang SI, Gray KA (2003) Chemical composition and Cu complexation characteristics of the extracellular polymeric substances from Pseudomonas aeruginosa biofilms. Metal Interact Environ Syst 43(1):529–530Google Scholar
  12. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346.  https://doi.org/10.1021/cr030698+ CrossRefGoogle Scholar
  13. Delucchi M, Ricotti R, Cerisola G (2011) Influence of micro—and nano—filler on chemico-physical properties of epoxy-based materials. Prog Org Coat 72(1–2):58–64.  https://doi.org/10.1016/j.porgcoat.2011.02.018 CrossRefGoogle Scholar
  14. Dietsche AF, Thomann Y, Thomann R, Mulhaupt R (2000) Translucent acrylic nanocomposites containing anisotropic laminated nanoparticles derived from intercalated layered silicates. J Appl Polym Sci 75(3):396–405.  https://doi.org/10.1002/(SICI)1097-4628 CrossRefGoogle Scholar
  15. Duraibabu D, Ganeshbabu T, Manjumeena R, Ananda Kumar S, Dasan P (2014) Unique coating formulation for corrosion and microbial prevention of mild steel. Prog Org Coat 77(3):657–664.  https://doi.org/10.1016/j.porgcoat.2013.12.002 CrossRefGoogle Scholar
  16. Duraibabu D, Gowripriya R, Saravanan P, Ananda Kumar S (2015) A comparative study on modifed epoxy and glycidyl carbamate coatings for corrosion and fouling prevention. Surface Innov 3(2):127–139.  https://doi.org/10.1680/si.13.00025 CrossRefGoogle Scholar
  17. Fernando RH (2004) Nanomaterial technology applications in coatings. JCT Coatings Tech 1(5):32–39Google Scholar
  18. Hartwig A, Sebald M, Putz D, Aberle L (2005) Preparation, characterisation and properties of nanocomposites based on epoxy resins—an overview. Macromol Symp 221(1):127–136.  https://doi.org/10.1002/masy.200550313 CrossRefGoogle Scholar
  19. He Z, Rao W, Ren T, Liu W, Xue Q (2002) The tribochemical study of some N-containing heterocyclic compounds as lubricating oil additives. Tribol Lett 13(2):87–93.  https://doi.org/10.1023/A:1020100631716 CrossRefGoogle Scholar
  20. Ikeda T, Tazuke S, Suzuki Y (1984) Biologically active polycations, synthesis and antimicrobial activity of poly(trialkylvinylbenzylammonium chloride)s. Makromol Chem 185:869–876.  https://doi.org/10.1002/macp.1984.021850503 CrossRefGoogle Scholar
  21. Jin FL, Park SJ (2008) Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer. Mater Sci Eng A 478(1–2):402–405.  https://doi.org/10.1016/j.msea.2007.05.053 CrossRefGoogle Scholar
  22. Kim J, Konstantinou I, Albanis T (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30(2):235–248CrossRefGoogle Scholar
  23. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63.  https://doi.org/10.1016/j.ijfoodmicro.2010.09.012 CrossRefGoogle Scholar
  24. Kumar R, Narayan R, Aminabhavi TM, Raju KVSN (2014) Nitrogen rich hyper-branched polyol via A3 + B3 polycondensation: thermal, mechanical, anti-corrosive and antimicrobial properties of poly (urethane-urea). J Polym Res (21):547.  https://doi.org/10.1007/s10965-014-0547-8
  25. Lam K, Lau KT (2006) Localized elastic modulus distribution of nanoclay/epoxy composites by using nanoindentation. Compos Struct 75(1–4):553–558.  https://doi.org/10.1016/j.compstruct.2006.04.045 CrossRefGoogle Scholar
  26. Liu H, Du Y, Wang X, Sun L (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95(2):147–155.  https://doi.org/10.1016/j.ijfoodmicro.2004.01.022 CrossRefGoogle Scholar
  27. Mallick K, Witcombb MJ, Scurrella MS (2005) Self-assembly of silver nanoparticles in a polymer solvent formation of a nanochain through nanoscale soldering. Mater Chem Phys 90(2–3):221–224.  https://doi.org/10.1016/j.matchemphys.2004.10.030 CrossRefGoogle Scholar
  28. Manjumeena R, Venkatesan R, Duraibabu D, Sudha J, Rajendran N, Kalaichelvan PT (2016) Green nanosilver as reinforcing eco-friendly additive to epoxy coating for augmented anticorrosive and antimicrobial behavior. Silicon 8(2):277–298.  https://doi.org/10.1007/s12633-015-9327-2 CrossRefGoogle Scholar
  29. Mondrzyk A, Fischer J, Ritter H (2014) Antibacterial materials: structure–bioactivity relationship of epoxy–amine resins containing quaternary ammonium compounds covalently attached. Polym Int 63(7):1192–1196.  https://doi.org/10.1002/pi.4690 CrossRefGoogle Scholar
  30. Nagy CM, Fejer SN, Berek L, Malnar J, Viskolcz B (2005) Hydrogen bondings in deoxynivalenol (DON) conformations—a density functional study. J Mol Struct Theochem 726(1–3):55–59.  https://doi.org/10.1016/j.theochem.2005.02.079 CrossRefGoogle Scholar
  31. Narute P, Rajashekhar Rao G, Misra S, Palanisamy A (2015) Modification of cottonseed oil for amine cured epoxy resin: studies on thermo-mechanical, physico-chemical, morphological and antimicrobial properties. Prog Org Coat 88:316–324.  https://doi.org/10.1016/j.porgcoat.2015.07.015 CrossRefGoogle Scholar
  32. Omrani A, Simon LC, Rostami AA (2009) The effects of alumina nanoparticle on the properties of an epoxy resin system. Mater Chem Phys 114(1):145–150.  https://doi.org/10.1016/j.matchemphys.2008.08.090 CrossRefGoogle Scholar
  33. Pohrelyuk IM, Fedirko VM, Tkachuk OV, Proskurnyak RV (2014) Corrosion resistance of titanium alloys with oxynitride coatings in concentrated inorganic acids. Mater Sci 50(2):269–276.  https://doi.org/10.1007/s11003-014-9717-4 CrossRefGoogle Scholar
  34. Raghavachar R, Letasi RJ, Kola PV, Chen Z, Massingill JL (1999) Rubber-toughening epoxy thermosets with epoxidized crambe oil. J Am Oil Chem Soc 76(4):511–516.  https://doi.org/10.1007/s11746-999-0033-3 CrossRefGoogle Scholar
  35. Ramezanzadeh B, Attar MM, Farzam M (2011) A study on the anticorrosion performance of the epoxy–polyamide nanocomposites containing ZnO nanoparticles. Prog Org Coat 72(3):410–422.  https://doi.org/10.1016/j.porgcoat.2011.05.014 CrossRefGoogle Scholar
  36. Ratna D (2001) Mechanical properties and morphology of epoxidized soyabean-oil-modified epoxy resin. Polym Int 50:179–184.  https://doi.org/10.1002/1097-0126 CrossRefGoogle Scholar
  37. Saravanan P, Aparna S, Ananda Kumar S, Duraibabu D (2015) Studies on biocide encapsulated zeolite–epoxy nano hybrid coatings on mild steel. Curr Bionanotechnol 1(1):37–50.  https://doi.org/10.2174/2213529401666150304234007 CrossRefGoogle Scholar
  38. Saravanan P, Jayamoorthy K, Ananda Kumar S (2016) Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance. J Sci Adv Mater Devices 1:367–378.  https://doi.org/10.1016/j.jsamd.2016.07.001 CrossRefGoogle Scholar
  39. Schmid G (1992) Large clusters and colloids: metals in the embryonic state. Chem Rev 92(8):1709–1727.  https://doi.org/10.1021/cr00016a002 CrossRefGoogle Scholar
  40. Sharmin E, Alam MS, Philip RK, Ahmad S (2010) Linseed amide diol/DGEBA epoxy blends for coating applications: preparation, characterization, ageing studies and coating properties. Prog Org Coat 67(2):170–179.  https://doi.org/10.1016/j.porgcoat.2009.09.012 CrossRefGoogle Scholar
  41. Shi G, Zhang MQ, Rong MZ, Wetzel B, Friedrich K (2003) Friction and wear of low nanometer Si3N4 filled epoxy composites. Wear 254(7–8):784–796.  https://doi.org/10.1016/S0043-1648(03)00190-X CrossRefGoogle Scholar
  42. Shi X, Nguyen TA, Suo Z, Liu Y, Avci R (2009) Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf Coat Technol 204(3):237–245.  https://doi.org/10.1016/j.surfcoat.2009.06.048 CrossRefGoogle Scholar
  43. Smetuna AB, Klabunde KJ, Sorensea CM (2005) Synthesis of spherical silver nanoparticles by digestive ripening stabilization with various agents, and their 3-D and 2-D super lattice formation. J Colloid Interface Sci 284(2):521–526.  https://doi.org/10.1016/j.jcis.2004.10.038 CrossRefGoogle Scholar
  44. Tansir A, Saad Alshehri M (2012) Thermal, microbial, and corrosion resistant metal-containing poly(Schiff) epoxy coatings. J Coat Technol Res 9(5):515–523.  https://doi.org/10.1007/s11998-011-9393-3 CrossRefGoogle Scholar
  45. Tkachenko LA, Shaulov AY, Berlin AA (2012) High-temperature protective coatings for carbon fibers. Inorg Mater 48(3):213–221.  https://doi.org/10.1134/S0020168512030168 CrossRefGoogle Scholar
  46. Wu N, Fu L, Su M, Aslam M, Wong K, Dravid VP (2004) Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett 4(2):383–386.  https://doi.org/10.1021/nl035139x CrossRefGoogle Scholar
  47. Yu DG (2007) Formation of colloidal silver nanoparticles stabilized by Na+ poly(γ-glutamic acid)–silver nitrate complex via chemical reduction process. Colloids Surf B: Biointerfaces 59(2):171–178.  https://doi.org/10.1016/j.colsurfb.2007.05.007 CrossRefGoogle Scholar
  48. Zafar S, Zafar F, Riaz U, Ahmad S (2009a) Synthesis, characterization, and anticorrosive coating properties of waterborne interpenetrating polymer network based on epoxy-acrylic-oleic acid with butylated melamine formaldehyde. J Appl Polym Sci 113(2):827–838.  https://doi.org/10.1002/app.29726 CrossRefGoogle Scholar
  49. Zafar S, Riaz U, Ahmad S (2009b) Water-borne melamine–formaldehyde-cured epoxy–acrylate corrosion resistant coatings. J Appl Polym Sci 107(1):215–222.  https://doi.org/10.1002/app.27022 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • D. Duraibabu
    • 1
  • R. Manjumeena
    • 2
  1. 1.The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and Engineering, Sun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Center for Advanced Studies in Botany, University of MadrasChennaiIndia

Personalised recommendations