Advertisement

Nanoparticles: Antimicrobial Applications and Its Prospects

  • Krishnapriya Madhu Varier
  • Mounika Gudeppu
  • Arulvasu Chinnasamy
  • Sumathi Thangarajan
  • Jesudas Balasubramanian
  • Yanmei Li
  • Babu Gajendran
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 25)

Abstract

Nowadays, nanomaterials [NPs; size, 1–100 nm] have emerged as unique antimicrobial agents. Specially, several classes of antimicrobial NPs and nanosized carriers for antibiotic delivery have proven their efficacy for handling infectious diseases, including antibiotic-resistant ones, in vitro as well as in animal models, which can offer better therapy than classical drugs due to their high surface area-to-volume ratio, resulting in appearance of new mechanical, chemical, electrical, optical, magnetic, electro-optical, and magneto-optical properties, unlike from their bulk properties. Thus, scientifically NPs have been validated to be fascinating in fighting bacteria. In this chapter, we will discuss precise properties of microorganisms and their modifications among each strain specifically. The toxicity mechanisms vary from one stain to another. Even the NP’s efficacy to treat against bacteria and drug-resistant bacteria and their defense mechanisms change according to strains in particular composition of cell walls, the enzymic composition, and so on. Thus, we provide an outlook on NPs in the microbial world and mechanism to overcome the drug resistance by tagging antibiotics in NPs and its future prospects for the scientific world.

Keywords

Nanoparticles Antibacterial action Microbial resistance NP-assisted drug delivery Future prospects of NP-assisted therapy 

References

  1. Abed N, Couvreur P (2014) Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 43(6):485–496.  https://doi.org/10.1016/j.ijantimicag.2014.02.009 CrossRefGoogle Scholar
  2. Actis L, Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK, Ong JL (2015) Effect of silver nanoparticle geometry on methicillin susceptible and resistant Staphylococcus aureus, and osteoblast viability. J Mater Sci 26(7):215.  https://doi.org/10.1007/s10856-015-5538-8 CrossRefGoogle Scholar
  3. Ahmad T, Wani IA, Lone IH, Ganguly A, Manzoor N, Ahmad A, Ahmed J, Al-Shihri AS (2013) Antifungal Activity of Gold Nanoparticles Prepared by Solvo thermal Method. Mater Res Bull 48(1):12–20.  https://doi.org/10.1016/j.materresbull.2012.09.069 CrossRefGoogle Scholar
  4. Andrade F, Rafael D, Videira M, Ferreira D, Sosnik A, Sarmento B (2013) Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv Drug Deliv Rev 65(13–14):1816–1827.  https://doi.org/10.1016/j.addr.2013.07.020 CrossRefGoogle Scholar
  5. Arakha M, Sweta P, Devyani S, Tapan KP, Bairagi CM, Krishna P, Bibekanand M, Suman J (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5:14813.  https://doi.org/10.1038/srep14813 CrossRefGoogle Scholar
  6. Bae E, Park H-J, Lee J, Kim Y, Yoon J, Park K, Choi K, Yi J (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168.  https://doi.org/10.1016/j.etap.2010.05.004 CrossRefGoogle Scholar
  7. Baig MS, Ahad A, Aslam M, Imam SS, Aqil M, Ali A (2016) Application of box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: optimization, in vitro release, ocular tolerance, and antibacterial activity. Int J Biol Macromol 85:258–270.  https://doi.org/10.1016/j.ijbiomac.2015.12.077 CrossRefGoogle Scholar
  8. Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R (2009) Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem 20:1497–1502.  https://doi.org/10.1021/bc900215b CrossRefGoogle Scholar
  9. Baxter JB, Aydil ES (2005) Nanowire-based dye-sensitized solar cells. Appl Phys Lett 86:053114.  https://doi.org/10.1063/1.1861510 CrossRefGoogle Scholar
  10. Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74.  https://doi.org/10.1038/nature02241 CrossRefGoogle Scholar
  11. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli Bacteria in ultrafine ZnO Nanoparticles colloidal medium. Nano Lett 6(4):866–870.  https://doi.org/10.1021/nl052326h CrossRefGoogle Scholar
  12. Brooks BD, Brooks AE (2014) Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev 78:14–27.  https://doi.org/10.1016/j.addr.2014 CrossRefGoogle Scholar
  13. Brunskill EW, Bayles KW (1996) Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus. J Bacteriol 178:611–618CrossRefGoogle Scholar
  14. Bugg TD, Walsh CT (1992) Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep 9:199–215.  https://doi.org/10.1128/jb.178.3.611-618.1996 CrossRefGoogle Scholar
  15. Cavassin ED, de Figueiredo LF, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni VS, Zucolotto V, Levin AS, Costa SF (2015) Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnol 13:64.  https://doi.org/10.1186/s12951-015-0120-6 CrossRefGoogle Scholar
  16. Cha SH, Hong J, McGuffie M, Yeom B, VanEpps JS, Kotov NA (2015) Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano 9(9):9097–9105.  https://doi.org/10.1021/acsnano.5b03247 CrossRefGoogle Scholar
  17. Chambers BA, Afrooz ARMN, Bae S, Aich N, Katz L, Saleh NB, Kirisits MJ (2013) Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ Sci Technol 48(1):761–769.  https://doi.org/10.1021/es403969x CrossRefGoogle Scholar
  18. Chen CW, Hsu CY, Lai SM, Syu WJ, Wang TY, Lai PS (2014) Metal nanobullets for multidrug resistant bacteria and biofilms. Adv Drug Deliv Rev 78:88–104.  https://doi.org/10.1016/j.addr.2014.08.004 CrossRefGoogle Scholar
  19. Cirz RT, Chin JK, Andes DR, de Crécy-Lagard V, Craig WA, Romesberg FE (2005) Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol 3(6):e176.  https://doi.org/10.1371/journal.pbio.0030176 CrossRefGoogle Scholar
  20. Courcelle J, Hanawalt PC (2003) RecA-dependent recovery of arrested DNA replication forks. Annu Rev Genet 37:611–646.  https://doi.org/10.1146/annurev.genet.37.110801.142616 CrossRefGoogle Scholar
  21. Cui Y, Zhao Y, Tian Y, Zhang W Lü X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33(7):2327–2333.  https://doi.org/10.1016/j.biomaterials.2011.11.057 CrossRefGoogle Scholar
  22. Daeihamed M, Dadashzadeh S, Haeri A, Akhlaghi MF (2017) Potential of liposomes for enhancement of oral drug absorption. Curr Drug Deliv Syst 14(2):289–303.  https://doi.org/10.2174/1567201813666160115125756 CrossRefGoogle Scholar
  23. Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interf Sci 166:119–135.  https://doi.org/10.1016/j.cis.2011.05.008 CrossRefGoogle Scholar
  24. De-Gusseme B, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, Uyttendaele M, Verstraete W, Boon N (2010) Biogenic silver for disinfection of water contaminated with viruses. Appl Environ Microbiol 76:1082–1087.  https://doi.org/10.1128/AEM.02433-09 CrossRefGoogle Scholar
  25. Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology 156(9):2630–2640.  https://doi.org/10.1099/mic.0.036681-0 CrossRefGoogle Scholar
  26. Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47:4140–4146.  https://doi.org/10.1021/es304023p CrossRefGoogle Scholar
  27. Drlica K, Snyder M (1978) Superhelical Escherichia coli DNA: relaxation by coumermycin. J Mol Biol 120:145–154.  https://doi.org/10.1016/0022-2836(78)90061-X CrossRefGoogle Scholar
  28. Drlica K, Malik M, Kerns RJ, Zhao X (2008) Quinolone-mediated bacterial death. Antimicrob Agents Chemother 52:385–392.  https://doi.org/10.1128/AAC.01617-06 CrossRefGoogle Scholar
  29. Dykman L, Khlebtsov N (2011) Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Nat 3(2):34–55 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347577/ Google Scholar
  30. Espeli O, Marians KJ (2004) Untangling intracellular DNA topology. Mol Microbiol 52:925–931.  https://doi.org/10.1111/j.1365-2958.2004.04047.x CrossRefGoogle Scholar
  31. Fang B, Jiang Y, Nusslein K, Rotello VM, Santore MM (2015) Antimicrobial surfaces containing cationic nanoparticles: how immobilized, clustered, and protruding cationic charge presentation affects killing activity and kinetics. Colloids Surf B 125:255–263.  https://doi.org/10.1016/j.colsurfb.2014.10.043 CrossRefGoogle Scholar
  32. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109.  https://doi.org/10.1016/j.nano.2009.04.006 CrossRefGoogle Scholar
  33. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5(4):382–386CrossRefGoogle Scholar
  34. Galdiero S, Falanga A, Vitiello M, Marra MCV, Galdiero M (2011) Silver nanoparticles as potential antiviral agents molecules. Mol Ther 16:8894–8918.  https://doi.org/10.3390/molecules16108894 CrossRefGoogle Scholar
  35. Garrett RA (2000) The ribosome: structure, function, antibiotics, and cellular interactions. ASM Press, Washington, DC.  https://doi.org/10.1128/9781555818142 CrossRefGoogle Scholar
  36. Gellert M, Mizuuchi K, O’Dea MH, Nash HA (1976) DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci 73:3872–3876 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC431247/ CrossRefGoogle Scholar
  37. Gellert M, Mizuuchi K, O’Dea MH, Itoh T, Tomizawa JL (1977) Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci 74:4772–4776 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC432037/ CrossRefGoogle Scholar
  38. Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra BJ, Dhavale J, Chopade B (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 7:483–496.  https://doi.org/10.2147/IJN.S24793 CrossRefGoogle Scholar
  39. Glišić BĐ, Djuran MI (2014) Gold complexes as antimicrobial agents: an overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans 43(16):5950–5969.  https://doi.org/10.1039/c4dt00022f CrossRefGoogle Scholar
  40. Gopinath K, Gowri S, Arumugam A (2013) Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties. J Nanostruct Chem 3(1):68.  https://doi.org/10.1186/2193-8865-3-68 CrossRefGoogle Scholar
  41. Groicher KH, Firek BA, Fujimoto DF, Bayles KW (2000) The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J Bacteriol 182:1794–1801 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC101860/ CrossRefGoogle Scholar
  42. Gu H, Ho P, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3(9):1261–1263.  https://doi.org/10.1021/nl034396z CrossRefGoogle Scholar
  43. Guerin E, Cambray G, Sanchez-Alberola N, Campoy S, Erill I, Da Re S, Gonzalez-Zorn B, Barbé J, Ploy MC, Mazel D (2009) The SOS response controls integrin recombination. Science 324:1034.  https://doi.org/10.1126/science.1172914 CrossRefGoogle Scholar
  44. Guo BL, Han P, Guo LC, Cao YQ, Li AD, Kong JZ, Zhai HF, Wu D (2015) The antibacterial activity of ta-doped ZnO nanoparticles. Nanoscale Res Lett 10(1):1047.  https://doi.org/10.1186/s11671-015-1047-4 CrossRefGoogle Scholar
  45. Gurunathan S, Han JW, Kwon DN, Kim JH (2014) Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against gram-negative and gram-positive bacteria. Nanoscale Res Lett 9(1):373.  https://doi.org/10.1186/1556-276X-9-373 CrossRefGoogle Scholar
  46. Hadinoto K, Sundaresan A, Cheow WS (2013) Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 85(3):427–443.  https://doi.org/10.1016/j.ejpb.2013.07.002 CrossRefGoogle Scholar
  47. Han SW, Lee SJ, Kim K (2001) Self-assembled monolayers of aromatic thiol and Selenol on silver: comparative study of Adsorptivity and stability Lang. Langmuir 17(22):6981–6987.  https://doi.org/10.1021/la010464q CrossRefGoogle Scholar
  48. He W, Kim HK, Wamer WG, Melka D, Callahan JH, Yin JJ (2014) Photogenerated charge carriers and reactive oxygen species in ZnO/au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc 36(2):750–757.  https://doi.org/10.1021/ja410800y CrossRefGoogle Scholar
  49. Henglein A (1998) Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem Mater 10(1):444–450.  https://doi.org/10.1021/cm970613j CrossRefGoogle Scholar
  50. Herdt AR, Drawz SM, Kang Y, Taton TA (2006) DNA dissociation and degradation at gold nanoparticle surfaces. Colloids Surf B Biointerfaces 51(2):130–139.  https://doi.org/10.1016/j.colsurfb.2006.06.006 CrossRefGoogle Scholar
  51. Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2006) Methanol oxidation on gold nanoparticles in alkaline media: unusual Electrocatalytic activity. Electrochim Acta 52(4):1662–1669.  https://doi.org/10.1016/j.electacta.2006.03.091 CrossRefGoogle Scholar
  52. Hetrick EM, Shin JH, Paul HS, Schoenfisch MH (2009) Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 30(14):2782–2789.  https://doi.org/10.1016/j.biomaterials.2009.01.052 CrossRefGoogle Scholar
  53. Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170.  https://doi.org/10.1016/S1369-5274(00)00070-9 CrossRefGoogle Scholar
  54. Holtje JV (1998) Growth of the stress-bearing and shape maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203 http://mmbr.asm.org/content/62/1/181.long Google Scholar
  55. Hong X, Wen J, Xiong X, Hu Y (2016) Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ Sci Pollut Res Int 23(5):4489–4497.  https://doi.org/10.1007/s11356-015-5668 CrossRefGoogle Scholar
  56. Hooper DC, Rubinstein E (2003) Quinolone antimicrobial agents. ASM Press, Washington, DC.  https://doi.org/10.3201/eid1006.040025 CrossRefGoogle Scholar
  57. Howard CR, Fletcher NF (2012) Emerging virus diseases: can we ever expect the unexpected? Emerg Microbes Infect 1:34–46.  https://doi.org/10.1038/emi.2012.47 CrossRefGoogle Scholar
  58. Howard BM, Pinney RJ, Smith JT (1993) Function of the SOS process in repair of DNA damage induced by modern 4-quinolones. J Pharm Pharmacol 45:658–662.  https://doi.org/10.1111/j.2042-7158.1993.tb05673.x CrossRefGoogle Scholar
  59. Jain PK, Lee KS, Sayed IH, Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248.  https://doi.org/10.1021/jp057170o CrossRefGoogle Scholar
  60. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plan Dis 93:1037–1043.  https://doi.org/10.1094/PDIS-93-10-1037 CrossRefGoogle Scholar
  61. Josephine HR, Kumar I, Pratt RF (2004) The perfect penicillin? Inhibition of a bacterial DD-peptidase by peptidoglycan-mimetic β-lactams. J Am Chem Soc 126:8122–8123.  https://doi.org/10.1021/ja048850s CrossRefGoogle Scholar
  62. Jyoti K, Baunthiyal M, Singh A (2016) Characterization of silver nanoparticles synthesized using Urtica dioica Linn. Leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci 9(3):217–227CrossRefGoogle Scholar
  63. Katz L, Ashley GW (2005) Translation and protein synthesis: macrolides. Chem Rev 105:499–528.  https://doi.org/10.1021/cr030107f CrossRefGoogle Scholar
  64. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis Peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 79(3):594–598.  https://doi.org/10.1016/j.saa.2011.03.040 CrossRefGoogle Scholar
  65. Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS (2016) Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog 95:32–42.  https://doi.org/10.1016/j.micpath.2016 CrossRefGoogle Scholar
  66. Khan MF, Ansari AH, Hameedullah M, Ahmad E, Husain FM, Zia Q, Baig U, Zaheer MR, Alam MM, Khan AM, AlOthman ZA, Ahmad I, Ashraf GM, Aliev G (2016) Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Sci Rep 6:27689.  https://doi.org/10.1038/srep27689 CrossRefGoogle Scholar
  67. Kim S, Ryu DY (2013) Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33(2):78–89.  https://doi.org/10.1002/jat.2792 CrossRefGoogle Scholar
  68. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242.  https://doi.org/10.1007/s10534-008-9159-2 CrossRefGoogle Scholar
  69. Kitano K, Tomasz A (1979) Triggering of autolytic cell wall degradation in Escherichia coli by beta-lactam antibiotics. Antimicrob Agents Chemother 16:838–848.  https://doi.org/10.1128/AAC.16.6.838 CrossRefGoogle Scholar
  70. Lellouche J, Friedman A, Gedanken A, Banin E (2012a) Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomed 7:5611–5624.  https://doi.org/10.2147/IJN.S37075 CrossRefGoogle Scholar
  71. Lellouche J, Friedman A, Lahmi R, Gedanken A, Banin E (2012b) Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int J Nanomed 7:1175–1188.  https://doi.org/10.2147/IJN.S26770 CrossRefGoogle Scholar
  72. Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Brown GE (2013) Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E coli. Environ Sci Technol 47(11):5738–5745.  https://doi.org/10.1021/es400396f
  73. Li WR, Xie XB, Shi QS, Zeng HY, You-Sheng OY, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122.  https://doi.org/10.1007/s00253-009-2159-5 CrossRefGoogle Scholar
  74. Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45(5):1977–1983.  https://doi.org/10.1021/es102624t CrossRefGoogle Scholar
  75. Lim EK, Chung BH, Chung SJ (2018) Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr Drug Targets 19(4):300–317.  https://doi.org/10.2174/1389450117666160602202339 CrossRefGoogle Scholar
  76. Liu J, Lu YA (2003) Colorimetric Lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125(22):6642–6643.  https://doi.org/10.1021/ja034775u CrossRefGoogle Scholar
  77. Liu Y, Tee JK, Chiu GN (2015) Dendrimers in oral drug delivery application: current explorations, toxicity issues and strategies for improvement. Curr Pharm Des 21(19):2629–2642.  https://doi.org/10.2174/1381612821666150416102058 CrossRefGoogle Scholar
  78. Liu J-L, Zhang W-J, Li X-D, Na Y, Pan W-S, Kong J, Zhang J-S (2016) Sustained-release Genistein from nanostructured lipid carrier suppresses human lens epithelial cell growth. Indian J Ophthalmol 9(5):643–649.  https://doi.org/10.18240/ijo.2016.05.01 CrossRefGoogle Scholar
  79. Lopez N, Janssens T, Clausen B, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catal 223(1):232–235.  https://doi.org/10.1016/j.jcat.2004.01.001 CrossRefGoogle Scholar
  80. Maeda H (2010) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 21(5):797–802.  https://doi.org/10.1021/bc100070g CrossRefGoogle Scholar
  81. Markowska K, Grudniak AM, Wolska KI (2013) Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol 60(4):523–530 http://www.actabp.pl/pdf/4_2013/523.pdf Google Scholar
  82. Marzieh R, Majid K, Seyed MJ (2012) Bacteriostatic agents. Chapter 11. In: A search for antibacterial agents, pp 119–234.  https://doi.org/10.5772/45652 CrossRefGoogle Scholar
  83. Mehmood S, Rehman MA, Ismail H, Mirza B, Bhatti AS (2015) Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria. Int J Nanomedicine 10:4521–4533.  https://doi.org/10.2147/IJN.S83356 CrossRefGoogle Scholar
  84. Miao L, Wang C, Hou J, Wang P, Ao Y, Li Y, Geng N, Yao Y, Lv B, Yang Y, You G, Xu Y (2016) Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms. Bioresour Technol 216:537–544.  https://doi.org/10.1016/j.biortech.2016.05.082 CrossRefGoogle Scholar
  85. Mishra A, Tripathy SK, Yun SI (2011) Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic Bacteria. J Nano Sci Nanotechnol 11(1):243–248.  https://doi.org/10.1166/jnn.2011.3265 CrossRefGoogle Scholar
  86. Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami Jones E (2012) The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 438:225–232.  https://doi.org/10.1016/j.scitotenv.2012.08.066 CrossRefGoogle Scholar
  87. Moreillon P, Markiewicz Z, Nachman S, Tomasz A (1990) Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms. Antimicrob Agents Chemother 34:33–39.  https://doi.org/10.1128/AAC.34.1.33 CrossRefGoogle Scholar
  88. Muhling M, Bradford A, Readman JW, Somerfield PJ, Handy RD (2009) An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar Environ Res 68(5):278–283.  https://doi.org/10.1016/j.marenvres.2009.07.001 CrossRefGoogle Scholar
  89. Nagy A, Harrison A, Sabbani S, Munson RS, Dutta PK, Waldman WJ (2011) Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomed 6:1833–1852.  https://doi.org/10.2147/IJN.S24019 CrossRefGoogle Scholar
  90. Narasimha G (2012) Antiviral activity of silver nanoparticles synthesized by fungal strain Aspergillus niger. J Nanosci Nanotechnol 6(1):18–20 https://www.researchgate.net/publication/222102689 Google Scholar
  91. Naseri N, Valizadeh H, Zakeri-Milani P (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 5(3):305–313.  https://doi.org/10.15171/apb.2015.043 CrossRefGoogle Scholar
  92. Nasrollahi A, Pourshamsian K, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nanomedicine 1:233–239.  https://doi.org/10.7508/IJND.2010.03.007 CrossRefGoogle Scholar
  93. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930.  https://doi.org/10.1126/science.289.5481.920 CrossRefGoogle Scholar
  94. Novak R, Charpentier E, Braun JS, Tuomanen E (2000) Signal transduction by a death signal peptide: uncovering the mechanism of bacterial killing by penicillin. Mol Cell Biol 5:49–57.  https://doi.org/10.1016/S1097-2765(00)80402-5
  95. Nussbaum VF, Brands M, Hinzen B, Weigand S, Häbich D (2006) Antibacterial natural products in medicinal chemistry – exodus or revival? Angew Chem Int Ed 45:5072–5129.  https://doi.org/10.1002/anie.200600350 CrossRefGoogle Scholar
  96. Patel U, Yong PY, Frank WH, Janet K, Andrew MS, David LP, Michael GK, Ekaterina VB (2001) Oxazolidinones mechanism of action: inhibition of the first peptide bond formation. J Biol Chem 276:37199–37205. https://doi.org/10.1074/jbc.M102966200Google Scholar
  97. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720.  https://doi.org/10.1128/AEM.02218-06 CrossRefGoogle Scholar
  98. Pan X, Wang Y, Chen Z, Pan D, Cheng Y, Liu Z, Lin Z, Guan X (2013) Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Appl Mater Interfaces 5(3):1137–1142.  https://doi.org/10.1021/am302910q CrossRefGoogle Scholar
  99. Parikh AN, Gillmor SD, Beers JD, Beardmore KM, Cutts RW, Swanson BI (1999) Characterization of chain molecular assemblies in long-chain, layered silver thiolates: a joint infrared spectroscopy and X-ray diffraction study. J Phys Chem B 103(15):2850–2861.  https://doi.org/10.1021/jp983938b CrossRefGoogle Scholar
  100. Park JT, UeharaT (2008) How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev 72:211–227.  https://doi.org/10.1128/MMBR.00027-07 CrossRefGoogle Scholar
  101. Patra JM, Panda SS, Dhal NK (2015) A review on green synthesis of gold nanoparticles. Int J Pharma Bio Sci 6(3):251–261 http://www.ijpbs.net/cms/php/upload/4537_pdf.pdf Google Scholar
  102. Pawan K, Rajesh T, Ashok C (2012) An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res 1(6):83–86Google Scholar
  103. Payne JN, Waghwani HK, Connor MG, Hamilton W, Tockstein S, Moolani H, Chavda F, Badwaik V, Lawrenz MB, Dakshinamurthy R (2016) Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol 7:634.  https://doi.org/10.3389/fmicb.2016.00607 CrossRefGoogle Scholar
  104. Peng YP, Lo SL, Ou HH, Lai SW (2010) Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-light-responsive photocatalysis. J Hazard Mater 183(1–3):754–758.  https://doi.org/10.1016/j.jhazmat.2010.07.090 CrossRefGoogle Scholar
  105. Peretyazhko TS, Zhang Q, Colvin VL (2014) Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol 48(20):11954–11961.  https://doi.org/10.1021/es5023202 CrossRefGoogle Scholar
  106. Peulen TO, Wilkinson KJ (2011) Diffusion of nanoparticles in a biofilm. Environ Sci Technol 45(8):3367–3373.  https://doi.org/10.1021/es103450g CrossRefGoogle Scholar
  107. Podporska-Carroll J, Myles A, Quilty B, McCormack DE, Fagan R, Hinder SJ, Dionysiou DD, Pillai SC (2017) Antibacterial properties of F-doped ZnO visible light photocatalyst. J Hazard Mater 324:39–47.  https://doi.org/10.1016/j.jhazmat.2015.12.038 CrossRefGoogle Scholar
  108. Prasannakumar JB, Vidya KS, Anantharaju G, Ramgopal H, Nagabhushana SC, Sharma B, Daruka Prasad SC, Prashantha RB, Basavaraj H, Rajanaik KL (2015) Bio-mediated route for the synthesis of shape tunable Y2O3:Tb3+ nanoparticles: photoluminescence and antibacterial properties. Spectrochim Acta A Mol Biomol Spectrosc 151:131–140.  https://doi.org/10.1016/j.saa.2015.06.081 CrossRefGoogle Scholar
  109. Qi G, Li L, Yu F, Wang H (2013) Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive bacteria over macrophage-like cells. ACS Appl Mater Interfaces 5(21):10874–10881.  https://doi.org/10.1021/am403940d CrossRefGoogle Scholar
  110. Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC (2012) Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6(5):4279–4287.  https://doi.org/10.1021/nn3008383 CrossRefGoogle Scholar
  111. Ranghar S (2012) Nanoparticle-based drug delivery systems: promising approaches against infections. Braz Arch Biol Technol 57:209–222.  https://doi.org/10.1590/S1516-89132013005000011 CrossRefGoogle Scholar
  112. Rice KC, Brian AF, Jeremy BN, Soo-Jin Y, Toni GP, Kenneth WB (2003) The Staphylococcus aureus cidAB operon: evaluation of its role in regulation of murein hydrolase activity and penicillin tolerance. J Bacteriol 185:2635–2643.  https://doi.org/10.1128/JB.185.8.2635-2643.2003 CrossRefGoogle Scholar
  113. Rubinstein E (2001) History of quinolones and their side effects. Chemotherapy 47(3):3–8.  https://doi.org/10.1159/000057838 CrossRefGoogle Scholar
  114. Saliani M, Jalal R, Kafshdare Goharshadi E (2015) Effects of pH and temperature on antibacterial activity of zinc oxide nanofluid against Escherichia coli O157:H7 and Staphylococcus aureus. Jundish J Microbiol 8(2):e17115.  https://doi.org/10.5812/jjm.17115 CrossRefGoogle Scholar
  115. Sambhy V, MM MB, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798.  https://doi.org/10.1021/ja061442z CrossRefGoogle Scholar
  116. Sangari M, Umadevi M, Mayandi J, Pinheiro JP (2015) Photocatalytic degradation and antimicrobial applications of F-doped MWCNTs/ TiO2 composites. Spectrochim Acta A 139:290–295.  https://doi.org/10.1016/j.saa.2014.12.061 CrossRefGoogle Scholar
  117. Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1995) Evaluation of growth inhibitory effect of ceramics powder slurry on Bacteria by conductance method. J Chem Eng Jpn 28:288–293.  https://doi.org/10.1252/jcej.28.288 CrossRefGoogle Scholar
  118. Singh R, Wagh P, Wadhwani S, Gaidhaini S, Kumbhar A, Bellare J, Chopade BA (2013) Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomedicine 8:4277–4290.  https://doi.org/10.2147/IJN.S48913 CrossRefGoogle Scholar
  119. Singh R, Smitha MS, Singh SP (2014) The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol 14(7):4745–4756 https://www.ncbi.nlm.nih.gov/pubmed/24757944 CrossRefGoogle Scholar
  120. Slomberg DL, Lu Y, Broadnax AD, Hunter RA, Carpenter AW, Schoenfisch MH (2013) Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Appl Mater Interfaces 5(19):9322–9329.  https://doi.org/10.1021/am402618w CrossRefGoogle Scholar
  121. Song J, Zhou J, Zhong LW (2006) Piezoelectric and semiconducting coupled power generating process of a single ZnO Belt/wire. A Technology for Harvesting Electricity from the environment. Nano Lett 6(8):1656–1662.  https://doi.org/10.1021/nl060820v CrossRefGoogle Scholar
  122. Speshock JL, Murdock RC, Braydich-Stolle LK, Schrand AM, Hussain SM (2010) Interaction of silver nanoparticles with tacaribe virus. J Nano Biotechnol 8:19.  https://doi.org/10.1186/1477-3155-8-19 CrossRefGoogle Scholar
  123. Spratt BG (1975) Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci 72:2999–3003 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC432906/ CrossRefGoogle Scholar
  124. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal Oxide Nanoparticles as Bactericidal Agents. Langmuir 18(17):6679–6686.  https://doi.org/10.1021/la0202374 CrossRefGoogle Scholar
  125. Sugino A, Peebles CL, Kreuzer KN, Cozzarelli NR (1977) Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking closing enzyme. Proc Natl Acad Sci 74:4767–4771 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC432036/ CrossRefGoogle Scholar
  126. Sukhorukova IV, Sheveyko AN, Kiryukhantsev-Korneev PV, Zhitnyak IY, Gloushankova NA, Denisenko EA, Filippovich SY, Ignatov SG, Shtansky DV (2015) Toward bioactive yet antibacterial surfaces. Colloids Surf B 135:158–165.  https://doi.org/10.1016/j.colsurfb.2015.06.059 CrossRefGoogle Scholar
  127. Talebian N, Sadeghi Haddad Zavvare H (2014) Enhanced bactericidal action of SnO2 nanostructures having different morphologies under visible light: influence of surfactant. J Photochem Photobiol B Biol 130:132–139.  https://doi.org/10.1016/j.jphotobiol.2013.10.018 CrossRefGoogle Scholar
  128. Thukral DK, Dumoga S, Mishra AK (2014) Solid lipid nanoparticles: promising therapeutic nanocarriers for drug delivery. Curr Drug Deliv 11(6):771–791.  https://doi.org/10.2174/156720181106141202122335 CrossRefGoogle Scholar
  129. Tile VA, Bholay AD (2012) Biosynthesis of silver nanoparticles and its antifungal activities. J Environ Res Dev 7:338–345.  https://doi.org/10.2147/IJN.S98339 CrossRefGoogle Scholar
  130. Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci 54:1133–1141 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC219812/ CrossRefGoogle Scholar
  131. Trefry JC, Wooley DP (2013) Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a micropinocytosis dependent mechanism. J Biomed Nanotechnol 9:1624–1635 https://www.ncbi.nlm.nih.gov/pubmed/23980510 CrossRefGoogle Scholar
  132. Uehara T, Dinh T, Bernhardt TG (2009) LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J Bacteriol 191:5094–5107.  https://doi.org/10.1128/JB.00505-09 CrossRefGoogle Scholar
  133. Valentine JS, Wertz DL, Lyons TJ, Liou LL, Goto JJ, Gralla EB (1998) The dark side of dioxygen biochemistry. Curr Opin Chem Biol 2(2):253–226.  https://doi.org/10.1016/S1367-5931(98)80067-7 CrossRefGoogle Scholar
  134. Waxman DJ, Yocum RR, Strominger JL (1980) Penicillins and cephalosporins are active site-directed acylating agents: evidence in support of the substrate analogue hypothesis. Philos Trans R Soc B 289:257–271.  https://doi.org/10.1098/rstb.1980.0044 CrossRefGoogle Scholar
  135. Wise EM, Park JT Jr (1965) Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc Natl Acad Sci 54:75–81 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC285799/ CrossRefGoogle Scholar
  136. Wu J, Shen Y, Jiang W, Jiang W, Shen Y (2016) Magnetic targeted drug delivery carriers encapsulated with pH-sensitive polymer: synthesis, characterization and in vitro doxorubicin release studies. J Biomater Sci Polym 27(13):1303–1316.  https://doi.org/10.1080/09205063.2016.1195159 CrossRefGoogle Scholar
  137. Xiong MH, Li YJ, Bao Y, Yang XZ, Hu B, Wang J (2012) Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery. Adv Mater 24(46):6175–6180.  https://doi.org/10.1002/adma.201202847 CrossRefGoogle Scholar
  138. Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PZ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275.  https://doi.org/10.1021/nl301934w CrossRefGoogle Scholar
  139. Xu Y, Gao C, Li X, He Y, Zhou L, Pang G, Sun S (2013) In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J Ocul Pharmacol Ther 29:270–274.  https://doi.org/10.1089/jop.2012.0155 CrossRefGoogle Scholar
  140. Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M (2016) Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep 6:26667.  https://doi.org/10.1038/srep26667 CrossRefGoogle Scholar
  141. Zhang L, Pornpattananangku D, Hu CM, Huang CM (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17(6):585–594.  https://doi.org/10.2174/092986710790416290 CrossRefGoogle Scholar
  142. Zhang W, Yao Y, Sullivan N, Chen Y (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45(10):4422–4428.  https://doi.org/10.1021/es104205a CrossRefGoogle Scholar
  143. Zhang Y, Shareena DTP, Deng H, Yu H (2015) Antimicrobial activity of gold nanoparticles and ionic gold. J Environ Sci Health C 33(3):286–327.  https://doi.org/10.1080/10590501.2015.1055161 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Krishnapriya Madhu Varier
    • 1
    • 3
  • Mounika Gudeppu
    • 2
  • Arulvasu Chinnasamy
    • 3
  • Sumathi Thangarajan
    • 1
  • Jesudas Balasubramanian
    • 2
  • Yanmei Li
    • 4
    • 5
  • Babu Gajendran
    • 4
    • 5
  1. 1.Department of Medical Biochemistry, Dr. ALM PGIBMSUniversity of MadrasChennaiIndia
  2. 2.Department of Pharmacology and Environmental Toxicology, Dr. ALM PGIBMSUniversity of MadrasChennaiIndia
  3. 3.Department of ZoologyUniversity of MadrasChennaiIndia
  4. 4.Department of Biology and ChemistryThe Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of SciencesGuizhouChina
  5. 5.State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina

Personalised recommendations