Advertisement

Exploitation of Nanoparticles as Photocatalysts for Clean and Environmental Applications

  • Vignesh KumaravelEmail author
  • Sivaraman SomasundaramEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 25)

Abstract

Semiconductor photocatalysis is one of the most promising tools to address energy crisis, global warming, and environmental pollution. Owing to its exceptional physicochemical properties and biocompatibility, TiO2 nanoparticles are commonly used as photocatalysts. TiO2 is a benchmark photocatalyst, and it can be used for dye-sensitized solar cells, water splitting to produce hydrogen, air purification, self-cleaning surfaces, disinfection of microbes, carbon dioxide conversion, NOx removal, and degradation of various organic pollutants under UV/visible/UV-visible/solar light irradiation. This book chapter covers the basic principles, mechanism, and environmental applications of TiO2 nanoparticles. The photo-reactor designs (lab scale and pilot scale) and operational challenges are described briefly. In addition to that, energy production of TiO2 using photovoltaics and photoelectrochemical methods is also discussed briefly.

Keywords

Nanoparticles Photocatalysis Energy Environment Solar light Pollutants Microorganisms Self-cleaning 

Notes

Acknowledgments

Sivaraman Somasundaram is grateful to the Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) for the financial support from the Ministry of Trade Industry & Energy, Republic of Korea (No.20163010012200).

References

  1. Abdi A, Denoyelle A, Commenges-Bernole N, Trari M (2013) Photocatalytic hydrogen evolution on new mesoporous material Bi2S3/Y-zeolite. Int J Hydrog Energy 38(5):2070–2078.  https://doi.org/10.1016/j.ijhydene.2012.11.085 CrossRefGoogle Scholar
  2. Ahmed S, Rasul MG, Brown R, Hashib MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manag 92(3):311–330.  https://doi.org/10.1016/j.jenvman.2010.08.028 CrossRefGoogle Scholar
  3. Alberici RM, Jardim WF (1997) Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl Catal B Environ 14(1–2):55–68.  https://doi.org/10.1016/S0926-3373(97)00012-X CrossRefGoogle Scholar
  4. Ali I, Kim J-O (2018) Visible-light-assisted photocatalytic activity of bismuth-TiO2 nanotube composites for chromium reduction and dye degradation. Chemosphere 207:285–292.  https://doi.org/10.1016/j.chemosphere.2018.05.075 CrossRefGoogle Scholar
  5. Almeida LC, Zanoni MV (2014) Decoration of Ti/TiO2 nanotubes with Pt nanoparticles for enhanced UV-Vis light absorption in photoelectrocatalytic process. J Braz Chem Soc 25(3):579–588.  https://doi.org/10.5935/0103-5053.20140034 CrossRefGoogle Scholar
  6. Alrousan DM, Polo-López MI, Dunlop PS, Fernández-Ibáñez P, Byrne JA (2012) Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors. Appl Catal B Environ 128:126–134.  https://doi.org/10.1016/j.apcatb.2012.07.038 CrossRefGoogle Scholar
  7. Ameen MM, Raupp GB (1999) Reversible catalyst deactivation in the photocatalytic oxidation of diluteo-xylene in air. J Catal 184(1):112–122.  https://doi.org/10.1006/jcat.1999.2442 CrossRefGoogle Scholar
  8. Ananpattarachai J, Kajitvichyanukul P (2015) Photocatalytic degradation of p, p′-DDT under UV and visible light using interstitial N-doped TiO2. J Environ Sci Health B 50(4):247–260.  https://doi.org/10.1080/03601234.2015.999592 CrossRefGoogle Scholar
  9. Andersen J, Pelaez M, Guay L, Zhang Z, O'Shea K, Dionysiou DD (2013) NF-TiO2 photocatalysis of amitrole and atrazine with addition of oxidants under simulated solar light: emerging synergies, degradation intermediates, and reusable attributes. J Hazard Mater 260:569–575.  https://doi.org/10.1016/j.jhazmat.2013.05.056 CrossRefGoogle Scholar
  10. Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M (1997) Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101(14):2632–2636.  https://doi.org/10.1021/jp962696h CrossRefGoogle Scholar
  11. Antoniou MG, Shoemaker JA, Armah A, Dionysiou DD (2008) LC/MS/MS structure elucidation of reaction intermediates formed during the TiO2 photocatalysis of microcystin-LR. Toxicon 51(6):1103–1118.  https://doi.org/10.1016/j.toxicon.2008.01.018 CrossRefGoogle Scholar
  12. Aris AZ, Shamsuddin AS, Praveena SM (2014) Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ Int 69:104–119.  https://doi.org/10.1016/j.envint.2014.04.011 CrossRefGoogle Scholar
  13. Aruna ST, Patil KC (1996) Synthesis and properties of nanosized titania. J Mater Synth Process 4(3):175–180Google Scholar
  14. Asahi RY, Morikawa TA, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271.  https://doi.org/10.1126/science.1061051 CrossRefGoogle Scholar
  15. Ashkarran AA, Hamidinezhad H, Haddadi H, Mahmoudi M (2014) Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light. Appl Surf Sci 301:338–345.  https://doi.org/10.1016/j.apsusc.2014.02.074 CrossRefGoogle Scholar
  16. Baram N, Starosvetsky D, Starosvetsky J, Epshtein M, Armon R, Ein-Eli Y (2009) Enhanced inactivation of E. coli bacteria using immobilized porous TiO2 photoelectrocatalysis. Electrochim Acta 54(12):3381–3386.  https://doi.org/10.1016/j.electacta.2008.12.033 CrossRefGoogle Scholar
  17. Baran D et al (2017) Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat Mater 16:363.  https://doi.org/10.1038/nmat4797 CrossRefGoogle Scholar
  18. Barndõk H, Peláez M, Han C, Platten WE, Campo P, Hermosilla D, Blanco A, Dionysiou DD (2013) Photocatalytic degradation of contaminants of concern with composite NF-TiO2 films under visible and solar light. Environ Sci Pollut Res 20(6):3582–3591.  https://doi.org/10.1007/s11356-013-1550-z CrossRefGoogle Scholar
  19. Benedix R, Dehn F, Quaas J, Orgass M (2000) Application of titanium dioxide photocatalysis to create self-cleaning building materials. Lacer 5:157–168Google Scholar
  20. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ Sci Technol 43(3):597–603.  https://doi.org/10.1021/es801845a CrossRefGoogle Scholar
  21. Bessegato GG, Cardoso JC, da Silva BF, Zanoni MV (2014) Enhanced photoabsorption properties of composites of Ti/TiO2 nanotubes decorated by Sb2S3 and improvement of degradation of hair dye. J Photochem Photobiol A Chem 276:96–103.  https://doi.org/10.1016/j.jphotochem.2013.12.001 CrossRefGoogle Scholar
  22. Bessegato GG, Cardoso JC, Zanoni MV (2015a) Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes. Catal Today 240:100–106.  https://doi.org/10.1016/j.cattod.2014.03.073 CrossRefGoogle Scholar
  23. Bessegato GG, Guaraldo TT, de Brito JF, Brugnera MF, Zanoni MV (2015b) Achievements and trends in photoelectrocatalysis: from environmental to energy applications. Electrocatalysis 6(5):415–441.  https://doi.org/10.1007/s12678-015-0259-9 CrossRefGoogle Scholar
  24. Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Methods 28(1):1–50.  https://doi.org/10.1080/03602549909351643 CrossRefGoogle Scholar
  25. Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems (IUPAC Technical Report). Pure Appl Chem 73(4):627–637.  https://doi.org/10.1351/pac200173040627 CrossRefGoogle Scholar
  26. Bondioli F, Taurino R, Ferrari AM (2009) Functionalization of ceramic tile surface by sol–gel technique. J Colloid Interface Sci 334(2):195–201.  https://doi.org/10.1016/j.jcis.2009.02.054 CrossRefGoogle Scholar
  27. Bora LV, Mewada RK (2017) Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review. Renew Sust Energ Rev 76:1393–1421.  https://doi.org/10.1016/j.rser.2017.01.130 CrossRefGoogle Scholar
  28. Brugnera MF, Rajeshwar K, Cardoso JC, Zanoni MV (2010) Bisphenol A removal from wastewater using self-organized TIO2 nanotubular array electrodes. Chemosphere 78(5):569–575.  https://doi.org/10.1016/j.chemosphere.2009.10.058 CrossRefGoogle Scholar
  29. Brugnera MF, Miyata M, Zocolo GJ, Leite CQ, Zanoni MV (2012) Inactivation and disposal of by-products from Mycobacterium smegmatis by photoelectrocatalytic oxidation using Ti/TiO2-Ag nanotube electrodes. Electrochim Acta 85:33–41.  https://doi.org/10.1016/j.electacta.2012.08.116 CrossRefGoogle Scholar
  30. Brugnera MF, Miyata M, Leite CQ, Zanoni MV (2013a) Silver ion release from electrodes of nanotubes of TiO2 impregnated with Ag nanoparticles applied in photoelectrocatalytic disinfection. J Photochem Photobiol A Chem 278:1–8.  https://doi.org/10.1016/j.jphotochem.2013.12.020 CrossRefGoogle Scholar
  31. Brugnera MF, Miyata M, Zocolo GJ, Leite CQ, Zanoni MV (2013b) A photoelectrocatalytic process that disinfects water contaminated with Mycobacterium kansasii and Mycobacterium avium. Water Res 47(17):6596–6605.  https://doi.org/10.1016/j.watres.2013.08.027 CrossRefGoogle Scholar
  32. Cao B, Cao S, Dong P, Gao J, Wang J (2013) High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation. Mater Lett 93:349–352.  https://doi.org/10.1016/j.matlet.2012.11.136 CrossRefGoogle Scholar
  33. Carneiro JO, Teixeira V, Portinha A, Magalhaes A, Coutinho P, Tavares CJ, Newton R (2007) Iron-doped photocatalytic TiO2 sputtered coatings on plastics for self-cleaning applications. Mater Sci Eng B 138(2):144–150.  https://doi.org/10.1016/j.mseb.2005.08.130 CrossRefGoogle Scholar
  34. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177.  https://doi.org/10.1016/j.progsolidstchem.2004.08.001 CrossRefGoogle Scholar
  35. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C: Photochem Rev 6(2–3):186–205.  https://doi.org/10.1016/j.jphotochemrev.2005.09.001 CrossRefGoogle Scholar
  36. Chen M, Chu JW (2011) NOx Photocatalytic degradation on active concrete road surface—from experiment to real-scale application. J Clean Prod 19(11):1266–1272.  https://doi.org/10.1016/j.jclepro.2011.03.001 CrossRefGoogle Scholar
  37. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959.  https://doi.org/10.1021/cr0500535 CrossRefGoogle Scholar
  38. Chen J, Poon CS (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build Environ 44(9):1899–1906.  https://doi.org/10.1016/j.buildenv.2009.01.002 CrossRefGoogle Scholar
  39. Chen Q, Liu H, Xin Y, Cheng X (2014) Coupling immobilized TiO2 nanobelts and Au nanoparticles for enhanced photocatalytic and photoelectrocatalytic activity and mechanism insights. Chem Eng J 241:145–154.  https://doi.org/10.1016/j.cej.2013.12.028 CrossRefGoogle Scholar
  40. Cheng X, Liu H, Chen Q, Li J, Wang P (2013) Preparation and characterization of palladium nano-crystallite decorated TiO2 nano-tubes photoelectrode and its enhanced photocatalytic efficiency for degradation of diclofenac. J Hazard Mater 254:141–148.  https://doi.org/10.1016/j.jhazmat.2013.03.062 CrossRefGoogle Scholar
  41. Cho M, Cates EL, Kim JH (2011) Inactivation and surface interactions of MS-2 bacteriophage in a TiO2 photoelectrocatalytic reactor. Water Res 45(5):2104–2110  https://doi.org/10.1016/j.watres.2010.12.017 CrossRefGoogle Scholar
  42. Choi H, Antoniou MG, Pelaez M, De la Cruz AA, Shoemaker JA, Dionysiou DD (2007) Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environ Sci Technol 41(21):7530–7535.  https://doi.org/10.1021/es0709122 CrossRefGoogle Scholar
  43. Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027.  https://doi.org/10.1016/j.watres.2010.02.039 CrossRefGoogle Scholar
  44. Christensen PA, Curtis TP, Egerton TA, Kosa SA, Tinlin JR (2003) Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide. Appl Catal B Environ 41(4):371–386  https://doi.org/10.1016/S0926-3373(02)00172-8 CrossRefGoogle Scholar
  45. Coronado JM, Fresno F, Hernández-Alonso MD, Portela R (2013) Design of advanced photocatalytic materials for energy and environmental applications. Springer, London.  https://doi.org/10.1007/978-1-4471-5061-9 CrossRefGoogle Scholar
  46. Cox CR, Winkler MT, Pijpers JJ, Buonassisi T, Nocera DG (2013) Interfaces between water splitting catalysts and buried silicon junctions. Energy Environ Sci 6(2):532–538.  https://doi.org/10.1039/C2EE23932A CrossRefGoogle Scholar
  47. Daghrir R, Drogui P, Ka I, El Khakani MA (2012a) Photoelectrocatalytic degradation of chlortetracycline using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process. J Hazard Mater 199:15–24.  https://doi.org/10.1016/j.jhazmat.2011.10.022(a) CrossRefGoogle Scholar
  48. Daghrir R, Drogui P, Robert D (2012b) Photoelectrocatalytic technologies for environmental applications. J Photochem Photobiol A Chem 238:41–52.  https://doi.org/10.1016/j.jphotochem.2012.04.009(b)
  49. Daghrir R, Drogui P, Dimboukou-Mpira A, El Khakani MA (2013) Photoelectrocatalytic degradation of carbamazepine using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process. Chemosphere 93(11):2756–2766.  https://doi.org/10.1016/j.chemosphere.2013.09.031 CrossRefGoogle Scholar
  50. Daghrir R, Drogui P, Delegan N, El Khakani MA (2014) Removal of chlortetracycline from spiked municipal wastewater using a photoelectrocatalytic process operated under sunlight irradiations. Sci Total Environ 466:300–305.  https://doi.org/10.1016/j.scitotenv.2013.07.001 CrossRefGoogle Scholar
  51. Dalton JS, Janes PA, Jones NG, Nicholson JA, Hallam KR, Allen GC (2002) Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach. Environ Pollut 120(2):415–422.  https://doi.org/10.1016/S0269-7491(02)00107-0 CrossRefGoogle Scholar
  52. Dimitrijevic NM, Vijayan BK, Poluektov OG, Rajh T, Gray KA, He H, Zapol P (2011) Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J Am Chem Soc 133(11):3964–3971.  https://doi.org/10.1021/ja108791u CrossRefGoogle Scholar
  53. Dimitroula H, Daskalaki VM, Frontistis Z, Kondarides DI, Panagiotopoulou P, Xekoukoulotakis NP, Mantzavinos D (2012) Solar photocatalysis for the abatement of emerging micro-contaminants in wastewater: synthesis, characterization and testing of various TiO2 samples. Appl Catal B Environ 117:283–291.  https://doi.org/10.1016/j.apcatb.2012.01.024 CrossRefGoogle Scholar
  54. Dunnill CW, Ansari Z, Kafizas A, Perni S, Morgan DJ, Wilson M, Parkin IP (2011) Visible light photocatalysts—N-doped TiO 2 by sol–gel, enhanced with surface bound silver nanoparticle islands. J Mater Chem 21(32):11854–11861.  https://doi.org/10.1039/C1JM11557J CrossRefGoogle Scholar
  55. Egerton TA, Kosa SA, Christensen PA (2006) Photoelectrocatalytic disinfection of E. coli suspensions by iron doped TiO2. Phys Chem Chem Phys 8(3):398–406.  https://doi.org/10.1039/B507516E CrossRefGoogle Scholar
  56. Etacheri V, Michlits G, Seery MK, Hinder SJ, Pillai SC (2013) A highly efficient TiO2–x Cx nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Appl Mater Interfaces 5(5):1663–1672.  https://doi.org/10.1021/am302676a CrossRefGoogle Scholar
  57. Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater Sci Semicond Process 42:2–14.  https://doi.org/10.1016/j.mssp.2015.07.052 CrossRefGoogle Scholar
  58. Fallet M, Mahdjoub H, Gautier B, Bauer JP (2001) Electrochemical behaviour of ceramic sol–gel coatings on mild steel. J Non-Cryst Solids 293–295:527–533.  https://doi.org/10.1016/S0022-3093(01)00770-0 CrossRefGoogle Scholar
  59. Fateh R, Ismail AA, Dillert R, Bahnemann DW (2011) Highly active crystalline mesoporous TiO2 films coated onto polycarbonate substrates for self-cleaning applications. J Phys Chem C 115(21):10405–10411.  https://doi.org/10.1021/jp200892z CrossRefGoogle Scholar
  60. Fernandez A, Lassaletta G, Jimenez VM, Justo A, Gonzalez-Elipe AR, Herrmann JM, Tahiri H, Ait-Ichou Y (1995) Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl Catal B Environ 7(1–2):49–63  https://doi.org/10.1016/0926-3373(95)00026-7 CrossRefGoogle Scholar
  61. Fisher MB, Keane DA, Fernandez-Ibanez P, Colreavy J, Hinder SJ, McGuigan KG, Pillai SC (2013) Nitrogen and copper doped solar light active TiO2 photocatalysts for water decontamination. Appl Catal B Environ 130-131:8–13  https://doi.org/10.1016/j.apcatb.2012.10.013 CrossRefGoogle Scholar
  62. Fotiou T, Triantis TM, Kaloudis T, Pastrana-Martínez LM, Likodimos V, Falaras P, Silva AM, Hiskia A (2013) Photocatalytic Degradation of Microcystin-LR and Off-Odor Compounds in Water under UV-A and Solar Light with a Nanostructured Photocatalyst Based on Reduced Graphene Oxide–TiO2 Composite. Identification of Intermediate Products. Ind Eng Chem Res 52(39):13991–14000.  https://doi.org/10.1021/ie400382r CrossRefGoogle Scholar
  63. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357 DOI:0009-2665/93/0793-0341CrossRefGoogle Scholar
  64. Fraga LE, Anderson MA, Beatriz ML, Paschoal FM, Romão LP, Zanoni MV (2009) Evaluation of the photoelectrocatalytic method for oxidizing chloride and simultaneous removal of microcystin toxins in surface waters. Electrochim Acta 54(7):2069–2076  https://doi.org/10.1016/j.electacta.2008.08.060 CrossRefGoogle Scholar
  65. Fresno F, Portela R, Suárez S, Coronado JM (2014) Photocatalytic materials: recent achievements and near future trends. J Mater Chem A 2(9):2863–2884.  https://doi.org/10.1039/C3TA13793G CrossRefGoogle Scholar
  66. Fujihara K, Ohno T, Matsumura M (1998) Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles. J Chem Soc Faraday Trans 94(24):3705–3709.  https://doi.org/10.1039/A806398B CrossRefGoogle Scholar
  67. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38.  https://doi.org/10.1038/238037a0 CrossRefGoogle Scholar
  68. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1(1):1–21.  https://doi.org/10.1016/S1389-5567(00)00002-2 CrossRefGoogle Scholar
  69. Ganguly P, Byrne C, Breen A, Pillai SC (2018) Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances. Appl Catal B Environ 225:51–75.  https://doi.org/10.1016/j.apcatb.2017.11.018 CrossRefGoogle Scholar
  70. Gong J, Pu W, Yang C, Zhang J (2013) Novel one-step preparation of tungsten loaded TiO2 nanotube arrays with enhanced photoelectrocatalytic activity for pollutant degradation and hydrogen production. Catal Commun 36:89–93.  https://doi.org/10.1016/j.catcom.2013.03.009 CrossRefGoogle Scholar
  71. Graham D, Kisch H, Lawton LA, Robertson PK (2010) The degradation of microcystin-LR using doped visible light absorbing photocatalysts. Chemosphere 78(9):1182–1185.  https://doi.org/10.1016/j.chemosphere.2009.12.003 CrossRefGoogle Scholar
  72. Granados-Oliveros G, Páez-Mozo EA, Ortega FM, Ferronato C, Chovelon JM (2009) Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Appl Catal B Environ 89(3–4):448–454.  https://doi.org/10.1016/j.apcatb.2009.01.001 CrossRefGoogle Scholar
  73. Grätzel M (1999) Mesoporous oxide junctions and nanostructured solar cells. Curr Opin Colloid Interface Sci 4(4):314–321.  https://doi.org/10.1016/S1359-0294(99)90013-4 CrossRefGoogle Scholar
  74. Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344.  https://doi.org/10.1038/35104607 CrossRefGoogle Scholar
  75. Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44(20):6841–6851.  https://doi.org/10.1021/ic0508371 CrossRefGoogle Scholar
  76. Gu A, Xiang W, Wang T, Gu S, Zhao X (2017) Enhance photovoltaic performance of tris (2, 2′-bipyridine) cobalt (II)/(III) based dye-sensitized solar cells via modifying TiO2 surface with metal-organic frameworks. Sol Energy 147:126–132.  https://doi.org/10.1016/j.solener.2017.03.045 CrossRefGoogle Scholar
  77. Guaraldo TT, Pulcinelli SH, Zanoni MB (2011) Influence of particle size on the photoactivity of Ti/TiO2 thin film electrodes, and enhanced photoelectrocatalytic degradation of indigo carmine dye. J Photochem Photobiol A Chem 217(1):259–266.  https://doi.org/10.1016/j.jphotochem.2010.10.019 CrossRefGoogle Scholar
  78. Haroune L, Salaun M, Ménard A, Legault CY, Bellenger JP (2014) Photocatalytic degradation of carbamazepine and three derivatives using TiO2 and ZnO: Effect of pH, ionic strength, and natural organic matter. Sci Total Environ 475:16–22.  https://doi.org/10.1016/j.scitotenv.2013.12.104 CrossRefGoogle Scholar
  79. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12R):8269–8285.  https://doi.org/10.1143/JJAP.44.8269 CrossRefGoogle Scholar
  80. Hassan M, Zhao Y, Xie B (2016) Employing TiO2 photocatalysis to deal with landfill leachate: current status and development. Chem Eng J 285:264–275.  https://doi.org/10.1016/j.cej.2015.09.093 CrossRefGoogle Scholar
  81. Heller A (1995) Chemistry and applications of photocatalytic oxidation of thin organic films. Acc Chem Res 28(12):503–508 doi:0001-4842/95/0128-0503CrossRefGoogle Scholar
  82. Henglein A (1997) Nanoclusters of semiconductors and metals: Colloidal nano-particles of semiconductors and metals: Electronic structure and processes. Ber Bunsenges Phys Chem 101(11):1562–1572.  https://doi.org/10.1002/bbpc.19971011103 CrossRefGoogle Scholar
  83. Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges anda opportunities. Energy Environ Sci 2(12):1231–1257.  https://doi.org/10.1039/B907933E CrossRefGoogle Scholar
  84. Herrmann JM (2010) Photocatalysis fundamentals revisited to avoid several misconceptions. Appl Catal B Environ 99(3–4):461–468.  https://doi.org/10.1016/j.apcatb.2010.05.012 CrossRefGoogle Scholar
  85. Hidaka H, Shimura T, Ajisaka K, Horikoshi S, Zhao J, Serpone N (1997) Photoelectrochemical decomposition of amino acids on a TiO2/OTE particulate film electrode. J Photochem Photobiol A Chem 109(2):165–170.  https://doi.org/10.1016/S1010-6030(97)00137-8 CrossRefGoogle Scholar
  86. Hirano K, Inoue K, Yatsu T (1992) Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder. J Photochem Photobiol A Chem 64(2):255–258 doi: 1010-6030/9285112-8CrossRefGoogle Scholar
  87. Hoffman AJ, Mills G, Yee H, Hoffmann MR (1992) Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J Phys Chem 96(13):5546–5552.  https://doi.org/10.1021/j100192a067 CrossRefGoogle Scholar
  88. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96.  https://doi.org/10.1021/cr00033a004 CrossRefGoogle Scholar
  89. Howe RF (1998) Recent developments in photocatalysis. Asia Pac J Chem Eng 6(1–2):55–84.  https://doi.org/10.1002/apj.5500060105 CrossRefGoogle Scholar
  90. Hüsken G, Hunger M, Brouwers HJ (2009) Experimental study of photocatalytic concrete products for air purification. Build Environ 44(12):2463–2474.  https://doi.org/10.1016/j.buildenv.2009.04.010 CrossRefGoogle Scholar
  91. Ichiura H, Kitaoka T, Tanaka H (2003) Photocatalytic oxidation of NOx using composite sheets containing TiO2 and a metal compound. Chemosphere 51(9):855–860.  https://doi.org/10.1016/S0045-6535(03)00049-3 CrossRefGoogle Scholar
  92. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277(5698):637–638.  https://doi.org/10.1038/277637a0 CrossRefGoogle Scholar
  93. Ishitani O, Inoue C, Suzuki Y, Ibusuki T (1993) Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J Photochem Photobiol A Chem 72(3):269–271.  https://doi.org/10.1016/1010-6030(93)80023-3 CrossRefGoogle Scholar
  94. Jelic A, Gros M, Ginebreda A, Cespedes-Sánchez R, Ventura F, Petrovic M, Barcelo D (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45(3):1165–1176.  https://doi.org/10.1016/j.watres.2010.11.010 CrossRefGoogle Scholar
  95. Ji J et al (2017) Mesoporous TiO2 under VUV irradiation: Enhanced photocatalytic oxidation for VOCs degradation at room temperature. Chem Eng J 327:490–499.  https://doi.org/10.1016/j.cej.2017.06.130 CrossRefGoogle Scholar
  96. Kabra K, Chaudhary R, Sawhney RL (2004) Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review. Ind Eng Chem Res 43(24):7683–7696.  https://doi.org/10.1021/ie0498551 CrossRefGoogle Scholar
  97. Kamaraj E, Somasundaram S, Balasubramani K, Eswaran MP, Muthuramalingam R, Park S (2018) Facile fabrication of CuO-Pb2O3 nanophotocatalyst for efficient degradation of Rose Bengal dye under visible light irradiation. Appl Surf Sci 433:206–212  https://doi.org/10.1016/j.apsusc.2017.09.139 CrossRefGoogle Scholar
  98. Kasprzyk-Hordern B, Ziółek M, Nawrocki J (2003) Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal B Environ 46(4):639–669  https://doi.org/10.1016/S0926-3373(03)00326-6 CrossRefGoogle Scholar
  99. Kato S, Mashio F (1956) Autooxidation by TiO2 as a photocatalyst Abstract Book Annual Meeting Chemical Society of Japan 223Google Scholar
  100. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125(10):3082–3089.  https://doi.org/10.1021/ja027751g CrossRefGoogle Scholar
  101. Kemme MR, Lateulere M, Maloney SW (1999) Reducing air pollutant emissions from solvent multi-base propellant production. Construction Engineering Research Lab (ARMY), Champaign. http://www.dtic.mil/dtic/tr/fulltext/u2/a367284.pdf
  102. Kobosko SM, Jara DH, Kamat PV (2017) AgInS2–ZnS Quantum Dots: Excited State Interactions with TiO2 and Photovoltaic Performance. ACS Appl Mater Interfaces 9:33379–33388.  https://doi.org/10.1021/acsami.6b14604 CrossRefGoogle Scholar
  103. Kočí K, Obalová L, Lacný Z (2008) Photocatalytic reduction of CO2 over TiO2 based catalysts. Chem Pap 62(1):1–9.  https://doi.org/10.2478/s11696-007-0072-x CrossRefGoogle Scholar
  104. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49(1):1–4.  https://doi.org/10.1016/j.apcatb.2003.11.010 CrossRefGoogle Scholar
  105. Kwak BS, Vignesh K, Park N-K, Ryu H-J, Baek J-I, Kang M (2015) Methane formation from photoreduction of CO2 with water using TiO2 including Ni ingredient. Fuel 143:570–576.  https://doi.org/10.1016/j.fuel.2014.11.066 CrossRefGoogle Scholar
  106. Lan Y, Lu Y, Ren Z (2013) Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy 2(5):1031–1045.  https://doi.org/10.1016/j.nanoen.2013.04.002 CrossRefGoogle Scholar
  107. Langridge JM, Gustafsson RJ, Griffiths PT, Cox RA, Lambert RM, Jones RL (2009) Solar driven nitrous acid formation on building material surfaces containing titanium dioxide: A concern for air quality in urban areas? Atmos Environ 43(32):5128–5131.  https://doi.org/10.1016/j.atmosenv.2009.06.046 CrossRefGoogle Scholar
  108. Lee J, Mahendra S, Alvarez PJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4(7):3580–3590.  https://doi.org/10.1021/nn100866w CrossRefGoogle Scholar
  109. Li XZ, Liu HL, Yue PT, Sun YP (2000) Photoelectrocatalytic oxidation of rose bengal in aqueous solution using a Ti/TiO2 mesh electrode. Environ Sci Technol 34(20):4401–4406.  https://doi.org/10.1021/es000939k CrossRefGoogle Scholar
  110. Li D, Chen Z, Chen Y, Li W, Huang H, He Y, Fu X (2008) A new route for degradation of volatile organic compounds under visible light: Using the bifunctional photocatalyst Pt/TiO2− xNx in H2− O2 atmosphere. Environ Sci Technol 42(6):2130–2135.  https://doi.org/10.1021/es702465g CrossRefGoogle Scholar
  111. Li A, Zhao X, Liu H, Qu J (2011) Characteristic transformation of humic acid during photoelectrocatalysis process and its subsequent disinfection byproduct formation potential. Water Res 45(18):6131–6140.  https://doi.org/10.1016/j.watres.2011.09.012 CrossRefGoogle Scholar
  112. Li G, Liu X, Zhang H, Wong PK, An T, Zhao H (2013) Comparative studies of photocatalytic and photoelectrocatalytic inactivation of E. coli in presence of halides. Appl Catal B Environ 140:225–232  https://doi.org/10.1016/j.apcatb.2013.04.004 CrossRefGoogle Scholar
  113. Li R, Williams SE, Li Q, Zhang J, Yang C, Zhou A (2014) Photoelectrocatalytic degradation of ofloxacin using highly ordered TiO2 nanotube arrays. Electrocatalysis 5(4):379–386.  https://doi.org/10.1007/s12678-014-0204-3 CrossRefGoogle Scholar
  114. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758 doi:0009-2665/95/0795-0735CrossRefGoogle Scholar
  115. Liu Y, Li J, Qiu X, Burda C (2006) Novel TiO2 Nanocatalysts for Wastewater Purification-Tapping Energy from the Sun. Water Pract Technol 1(4):wpt2006073.  https://doi.org/10.2166/wpt.2006.073 CrossRefGoogle Scholar
  116. Liu H, Liu G, Shi X (2010) N/Zr-codoped TiO2 nanotube arrays: fabrication, characterization, and enhanced photocatalytic activity. Colloids Surf A Physicochem Eng Asp 363(1–3):35–40.  https://doi.org/10.1016/j.colsurfa.2010.04.010 CrossRefGoogle Scholar
  117. Liu G, Jimmy CY, Lu GQ, Cheng HM (2011) Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun 47(24):6763–6783.  https://doi.org/10.1039/C1CC10665A CrossRefGoogle Scholar
  118. Liu H, Cao X, Liu G, Wang Y, Zhang N, Li T, Tough R (2013) Photoelectrocatalytic degradation of triclosan on TiO2 nanotube arrays and toxicity change. Chemosphere 93(1):160–165.  https://doi.org/10.1016/j.chemosphere.2013.05.018 CrossRefGoogle Scholar
  119. Liu X, Zhang H, Liu C, Chen J, Li G, An T, Wong PK, Zhao H (2014) UV and visible light photoelectrocatalytic bactericidal performance of 100%{1 1 1} faceted rutile TiO2 photoanode. Catal Today 224:77–82.  https://doi.org/10.1016/j.cattod.2013.09.041 CrossRefGoogle Scholar
  120. Liu B, Mu L, Han B, Zhang J, Shi H (2017a) Fabrication of TiO2/Ag2O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation. Appl Surf Sci 396:1596–1603.  https://doi.org/10.1016/j.apsusc.2016.11.220 CrossRefGoogle Scholar
  121. Liu K, Wang G, Meng M, Chen S, Li J, Sun X, Yuan H, Sun L, Qin N (2017b) TiO2 nanotube photonic crystal fabricated by two-step anodization method for enhanced photoelectrochemical water splitting. Mater Lett 207:96–99.  https://doi.org/10.1016/j.matlet.2017.07.060 CrossRefGoogle Scholar
  122. Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686.  https://doi.org/10.1016/j.apsusc.2016.09.093 CrossRefGoogle Scholar
  123. Lu N, Chen S, Wang H, Quan X, Zhao H (2008) Synthesis of molecular imprinted polymer modified TiO2 nanotube array electrode and their photoelectrocatalytic activity. J Solid State Chem 181(10):2852–2858.  https://doi.org/10.1016/j.jssc.2008.07.004 CrossRefGoogle Scholar
  124. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1(18):2655–2661.  https://doi.org/10.1021/jz1007966 CrossRefGoogle Scholar
  125. Mahadik MA, An GW, David S, Choi SH, Cho M, Jang JS (2017) Fabrication of A/R-TiO2 composite for enhanced photoelectrochemical performance: solar hydrogen generation and dye degradation. Appl Surf Sci 426:833–843.  https://doi.org/10.1016/j.apsusc.2017.07.179 CrossRefGoogle Scholar
  126. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59.  https://doi.org/10.1016/j.cattod.2009.06.018 CrossRefGoogle Scholar
  127. Mamaghani AH, Haghighat F, Lee C-S (2017) Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art. Appl Catal B Environ 203:247–269.  https://doi.org/10.1016/j.apcatb.2016.10.037 CrossRefGoogle Scholar
  128. Mamane H, Horovitz I, Lozzi L, Di Camillo D, Avisar D (2014) The role of physical and operational parameters in photocatalysis by N-doped TiO2 sol–gel thin films. Chem Eng J 257:159–169.  https://doi.org/10.1016/j.cej.2014.07.018 CrossRefGoogle Scholar
  129. Markowska-Szczupak A, Ulfig K, Morawski AW (2011) The application of titanium dioxide for deactivation of bioparticulates: an overview. Catal Today 169(1):249–257.  https://doi.org/10.1016/j.cattod.2010.11.055 CrossRefGoogle Scholar
  130. Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29(1–2):211–214.  https://doi.org/10.1111/j.1574-6968.1985.tb00864.x CrossRefGoogle Scholar
  131. Miao Y, Xu X, Liu K, Wang N (2017) Preparation of novel Cu/TiO2 mischcrystal composites and antibacterial activities for Escherichia coli under visible light. Ceram Int 43:9658–9663.  https://doi.org/10.1016/j.ceramint.2017.04.137 CrossRefGoogle Scholar
  132. Miranda-García N, Suárez S, Sánchez B, Coronado JM, Malato S, Maldonado MI (2011) Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl Catal B Environ 103(3–4):294–301.  https://doi.org/10.1016/j.apcatb.2011.01.030 CrossRefGoogle Scholar
  133. Mitoraj D, Jańczyk A, Strus M, Kisch H, Stochel G, Heczko PB, Macyk W (2007) Visible light inactivation of bacteria and fungi by modified titanium dioxide. Photochem Photobiol Sci 6(6):642–648.  https://doi.org/10.1039/B617043A CrossRefGoogle Scholar
  134. Mueses MA, Machuca-Martinez F, Puma GL (2013) Effective quantum yield and reaction rate model for evaluation of photocatalytic degradation of water contaminants in heterogeneous pilot-scale solar photoreactors. Chem Eng J 215:937–947.  https://doi.org/10.1016/j.cej.2012.11.076 CrossRefGoogle Scholar
  135. Navarro Yerga RM, Álvarez Galván MC, Del Valle F, Villoria de la Mano JA, Fierro JL (2009) Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation. Chem Sus Chem 2(6):471–485.  https://doi.org/10.1002/cssc.200900018 CrossRefGoogle Scholar
  136. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl, Br, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115(14): 6382–6390. doi:0002-7863/93/1515-63Google Scholar
  137. Nazeri A, Trzaskoma-Paulette PP, Bauer D (1997) Synthesis and properties of cerium and titanium oxide thin coatings for corrosion protection of 304 stainless steel. J Sol-Gel Sci Technol 10(3):317–331.  https://doi.org/10.1023/A:1018381503008 CrossRefGoogle Scholar
  138. Ni M, Leung MK, Leung DY, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11(3):401–425.  https://doi.org/10.1016/j.rser.2005.01.009 CrossRefGoogle Scholar
  139. Nie X, Li G, Gao M, Sun H, Liu X, Zhao H, Wong PK, An T (2014a) Comparative study on the photoelectrocatalytic inactivation of Escherichia coli K-12 and its mutant Escherichia coli BW25113 using TiO2 nanotubes as a photoanode. Appl Catal B Environ 147:562–570.  https://doi.org/10.1016/j.apcatb.2013.09.037 CrossRefGoogle Scholar
  140. Nie X, Li G, Wong PK, Zhao H, An T (2014b) Synthesis and characterization of N-doped carbonaceous/TiO2 composite photoanodes for visible-light photoelectrocatalytic inactivation of Escherichia coli K-12. Catal Today 230:67–73.  https://doi.org/10.1016/j.cattod.2013.09.046 CrossRefGoogle Scholar
  141. Nie C, Liu L, He R (2018) Pt/TiO2-ZnO in a circuit Photo-electro-catalytically removed HCHO for outstanding indoor air purification. Sep Purif Technol 206:316–323.  https://doi.org/10.1016/j.seppur.2018.06.024 CrossRefGoogle Scholar
  142. Nocera DG (2012) The artificial leaf. Acc Chem Res 45(5):767–776.  https://doi.org/10.1021/ar2003013 CrossRefGoogle Scholar
  143. Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117:11302–11336.  https://doi.org/10.1021/acs.chemrev.7b00161 CrossRefGoogle Scholar
  144. Nozik AJ (1977) Photochemical diodes. Appl Phys Lett 30(11):567–570.  https://doi.org/10.1063/1.89262 CrossRefGoogle Scholar
  145. Ohno T, Bai L, Hisatomi T, Maeda K, Domen K (2012) Photocatalytic water splitting using modified GaN: ZnO solid solution under visible light: long-time operation and regeneration of activity. J Am Chem Soc 134(19):8254–8259.  https://doi.org/10.1021/ja302479f CrossRefGoogle Scholar
  146. Oliveira HG, Ferreira LH, Bertazzoli R, Longo C (2015) Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator. Water Res 72:305–314.  https://doi.org/10.1016/j.watres.2014.08.042 CrossRefGoogle Scholar
  147. O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740.  https://doi.org/10.1038/353737a0 CrossRefGoogle Scholar
  148. Osugi ME, Umbuzeiro GA, Anderson MA, Zanoni MV (2005) Degradation of metallophtalocyanine dye by combined processes of electrochemistry and photoelectrochemistry. Electrochim Acta 50(25–26):5261–5269.  https://doi.org/10.1016/j.electacta.2005.01.058 CrossRefGoogle Scholar
  149. Pan Z, Stemmler EA, Cho HJ, Fan W, LeBlanc LA, Patterson HH, Amirbahman A (2014) Photocatalytic degradation of 17α-ethinylestradiol (EE2) in the presence of TiO2-doped zeolite. J Hazard Mater 279:17–25.  https://doi.org/10.1016/j.jhazmat.2014.06.040 CrossRefGoogle Scholar
  150. Papailias I, Todorova N, Giannakopoulou T, Yu J, Dimotikali D, Trapalis C (2017) Photocatalytic activity of modified g-C3N4/TiO2 nanocomposites for NOx removal. Catal Today 280:37–44.  https://doi.org/10.1016/j.cattod.2016.06.032 CrossRefGoogle Scholar
  151. Park H, Bak A, Ahn YY, Choi J, Hoffmannn MR (2012) Photoelectrochemical performance of multi-layered BiOx–TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water. J Hazard Mater 211:47–54.  https://doi.org/10.1016/j.jhazmat.2011.05.009 CrossRefGoogle Scholar
  152. Parkin IP, Palgrave RG (2005) Self-cleaning coatings. J Mater Chem 15(17):1689–1695.  https://doi.org/10.1039/B412803F CrossRefGoogle Scholar
  153. Paschoal FM, Anderson MA, Zanoni MV (2009a) Simultaneous removal of chromium and leather dye from simulated tannery effluent by photoelectrochemistry. J Hazard Mater 166(1):531–537.  https://doi.org/10.1016/j.jhazmat.2008.11.058 CrossRefGoogle Scholar
  154. Paschoal FM, Anderson MA, Zanoni MV (2009b) The photoelectrocatalytic oxidative treatment of textile wastewater containing disperse dyes. Desalination 249(3):1350–1355.  https://doi.org/10.1016/j.desal.2009.06.024(2009b)
  155. Paspaltsis I, Kotta K, Lagoudaki R, Grigoriadis N, Poulios I, Sklaviadis T (2006) Titanium dioxide photocatalytic inactivation of prions. J Gen Virol 87(10):3125–3130.  https://doi.org/10.1099/vir.0.81746-0 CrossRefGoogle Scholar
  156. Patsoura A, Kondarides DI, Verykios XE (2007) Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal Today 124(3–4):94–102.  https://doi.org/10.1016/j.cattod.2007.03.028 CrossRefGoogle Scholar
  157. Paz Y (2010) Application of TiO2 photocatalysis for air treatment: Patents’ overview. Appl Catal B Environ 99(3–4):448–460.  https://doi.org/10.1016/j.apcatb.2010.05.011 CrossRefGoogle Scholar
  158. Pelaez M, Falaras P, Likodimos V, Kontos AG, Armah A, O'shea K, Dionysiou DD (2010) Synthesis, structural characterization and evaluation of sol–gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR. Appl Catal B Environ 99(3–4):378–387.  https://doi.org/10.1016/j.apcatb.2010.06.017 CrossRefGoogle Scholar
  159. Pelaez M, Armah A, O’Shea K, Falaras P, Dionysiou DD (2011) Effects of water parameters on the degradation of microcystin-LR under visible light-activated TiO2 photocatalyst. Water Res 45(12):3787–3796.  https://doi.org/10.1016/j.watres.2011.04.036 CrossRefGoogle Scholar
  160. Pelaez M, Falaras P, Kontos AG, Armah A, O'shea K, Dunlop PS, Byrne JA, Dionysiou DD (2012) A comparative study on the removal of cylindrospermopsin and microcystins from water with NF-TiO2-P25 composite films with visible and UV–vis light photocatalytic activity. Appl Catal B Environ 121:30–39.  https://doi.org/10.1016/j.apcatb.2012.03.010 CrossRefGoogle Scholar
  161. Peng Y-P, Chen H, Huang C (2017) The synergistic effect of photoelectrochemical (PEC) reactions exemplified by concurrent perfluorooctanoic acid (PFOA) degradation and hydrogen generation over carbon and nitrogen codoped TiO2 nanotube arrays (CN-TNTAs) photoelectrode. Appl Catal B Environ 209:437–446.  https://doi.org/10.1016/j.apcatb.2017.02.084 CrossRefGoogle Scholar
  162. Philippidis N, Sotiropoulos S, Efstathiou A, Poulios I (2009) Photoelectrocatalytic degradation of the insecticide imidacloprid using TiO2/Ti electrodes. J Photochem Photobiol A Chem 204(2–3):129–136.  https://doi.org/10.1016/j.jphotochem.2009.03.007 CrossRefGoogle Scholar
  163. Philippidis N, Nikolakaki E, Sotiropoulos S, Poulios I (2010) Photoelectrocatalytic inactivation of E. coli XL-1 blue colonies in water. J Chem Technol Biotechnol 85(8):1054–1060.  https://doi.org/10.1002/jctb.2394 CrossRefGoogle Scholar
  164. Pi Y, Li Z, Xu D, Liu J, Li Y, Zhang F, Zhang G, Peng W, Fan X (2017) 1T-Phase MoS2 Nanosheets on TiO2 Nanorod Arrays: 3D Photoanode with Extraordinary Catalytic Performance. ACS Sustain Chem Eng 5:5175–5182.  https://doi.org/10.1021/acssuschemeng.7b00518 CrossRefGoogle Scholar
  165. Piera E, Ayllón JA, Doménech X, Peral J (2002) TiO2 deactivation during gas-phase photocatalytic oxidation of ethanol. Catal Today 76(2–4):259–270.  https://doi.org/10.1016/S0920-5861(02)00224-9 CrossRefGoogle Scholar
  166. Pillai UR, Sahle–Demessie E (2002) Selective oxidation of alcohols in gas phase using light-activated titanium dioxide. J Catal 211(2):434–444.  https://doi.org/10.1006/jcat.2002.3771 CrossRefGoogle Scholar
  167. Podporska-Carroll J, Panaitescu E, Quilty B, Wang L, Menon L, Pillai SC (2015) Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes. Appl Catal B Environ 176–177:70–75.  https://doi.org/10.1016/j.apcatb.2015.03.029 CrossRefGoogle Scholar
  168. Prieto-Rodriguez L, Miralles-Cuevas S, Oller I, Fernández-Ibáñez P, Agüera A, Blanco J, Malato S (2012a) Optimization of mild solar TiO2 photocatalysis as a tertiary treatment for municipal wastewater treatment plant effluents. Appl Catal B Environ 128:119–125.  https://doi.org/10.1016/j.apcatb.2012.03.034(a) CrossRefGoogle Scholar
  169. Prieto-Rodriguez L, Miralles-Cuevas S, Oller I, Agüera A, Puma GL, Malato S (2012b) Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. J Hazard Mater 211:131–137.  https://doi.org/10.1016/j.jhazmat.2011.09.008 bCrossRefGoogle Scholar
  170. Puma GL, Bono A, Krishnaiah D, Collin JG (2008) Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. J Hazard Mater 157(2–3):209–219.  https://doi.org/10.1016/j.jhazmat.2008.01.040 CrossRefGoogle Scholar
  171. Qi K, Daoud WA, Xin JH, Mak CL, Tang W, Cheung WP (2006) Self-cleaning cotton. J Mater Chem 16(47):4567–4574.  https://doi.org/10.1039/B610861J CrossRefGoogle Scholar
  172. Qian X, Ren M, Yue D, Zhu Y, Han Y, Bian Z, Zhao Y (2017) Mesoporous TiO2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. Appl Catal B Environ 212:1–6.  https://doi.org/10.1016/j.apcatb.2017.04.059 CrossRefGoogle Scholar
  173. Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946.  https://doi.org/10.1016/j.watres.2012.09.058 CrossRefGoogle Scholar
  174. Rahmawati F, Kusumaningsih T, Hapsari AM, Hastuti A (2010) Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection. Chem Pap 64(5):557–5565.  https://doi.org/10.2478/s11696-010-0036-4 CrossRefGoogle Scholar
  175. Reddy PVL, Kavitha B, Reddy PAK, Kim K-H (2017) TiO2-based photocatalytic disinfection of microbes in aqueous media: a review. Environ Res 154:296–303.  https://doi.org/10.1016/j.envres.2017.01.018 CrossRefGoogle Scholar
  176. Rengifo-Herrera JA, Mielczarski E, Mielczarski J, Castillo NC, Kiwi J, Pulgarin C (2008) Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light. Appl Catal B Environ 84(3–4):448–456.  https://doi.org/10.1016/j.apcatb.2008.04.030 CrossRefGoogle Scholar
  177. Rengifo-Herrera JA, Pierzchała K, Sienkiewicz A, Forro L, Kiwi J, Pulgarin C (2009a) Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light. Appl Catal B Environ 88(3–4):398–406.  https://doi.org/10.1016/j.apcatb.2008.10.025(a) CrossRefGoogle Scholar
  178. Rengifo-Herrera JA, Kiwi J, Pulgarin C (2009b) N, S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation. J Photochem Photobiol A Chem 205(2–3):109–115.  https://doi.org/10.1016/j.jphotochem.2009.04.015 bCrossRefGoogle Scholar
  179. Rizzo L, Meric S, Guida M, Kassinos D, Belgiorno V (2009) Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res 43(16):4070–4078.  https://doi.org/10.1016/j.watres.2009.06.046 CrossRefGoogle Scholar
  180. Rozhkova EA, Ulasov I, Lai B, Dimitrijevic NM, Lesniak MS, Rajh T (2009) A high-performance nanobio photocatalyst for targeted brain cancer therapy. Nano Lett 9(9):3337–3342.  https://doi.org/10.1021/nl901610f CrossRefGoogle Scholar
  181. Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2007) Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J Phys Chem C 111(49):18195–18203.  https://doi.org/10.1021/jp074860e CrossRefGoogle Scholar
  182. Sacco O, Vaiano V, Rizzo L, Sannino D (2018) Photocatalytic activity of a visible light active structured photocatalyst developed for municipal wastewater treatment. J Clean Prod 175:38–49.  https://doi.org/10.1016/j.jclepro.2017.11.088 CrossRefGoogle Scholar
  183. Selcuk H (2010) Disinfection and formation of disinfection by-products in a photoelectrocatalytic system. Water Res 44(13):3966–3972.  https://doi.org/10.1016/j.watres.2010.04.034 CrossRefGoogle Scholar
  184. Senthilnathan J, Philip L (2010) Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chem Eng J 161(1–2):83–92.  https://doi.org/10.1016/j.cej.2010.04.034 CrossRefGoogle Scholar
  185. Shang J, Zhu Y, Du Y, Xu Z (2002) Comparative studies on the deactivation and regeneration of TiO2 nanoparticles in three photocatalytic oxidation systems: C7H16, SO2, and C7H16–SO2. J Solid State Chem 166(2):395–399.  https://doi.org/10.1006/jssc.2002.9613 CrossRefGoogle Scholar
  186. Shao GS, Ma TY, Zhang XJ, Ren TZ, Yuan ZY (2009) Phosphorus and nitrogen co-doped titania photocatalysts with a hierarchical meso−/macroporous structure. J Mater Sci 44(24):6754–6763.  https://doi.org/10.1007/s10853-009-3628-z CrossRefGoogle Scholar
  187. Silva CP, Otero M, Esteves V (2012) Processes for the elimination of estrogenic steroid hormones from water: a review. Environ Pollut 165:38–58.  https://doi.org/10.1016/j.envpol.2012.02.002 CrossRefGoogle Scholar
  188. Skalska K, Miller JS, Ledakowicz S (2010) Trends in NOx abatement: A review. Sci Total Environ 408(19):3976–3989.  https://doi.org/10.1016/j.scitotenv.2010.06.001 CrossRefGoogle Scholar
  189. Šojić DV, Despotović VN, Abazović ND, Čomor MI, Abramović BF (2010) Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation. J Hazard Mater 179(1–3):49–56.  https://doi.org/10.1016/j.jhazmat.2010.02.055 CrossRefGoogle Scholar
  190. Subagio DP, Srinivasan M, Lim M, Lim TT (2010) Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor. Appl Catal B Environ 95(3–4):414–422.  https://doi.org/10.1016/j.apcatb.2010.01.021 CrossRefGoogle Scholar
  191. Sun W, Li S, Mai J, Ni J (2010) Initial photocatalytic degradation intermediates/pathways of 17α-ethynylestradiol: Effect of pH and methanol. Chemosphere 81(1):92–99.  https://doi.org/10.1016/j.chemosphere.2010.06.051 CrossRefGoogle Scholar
  192. Swetha S, Santhosh SM, Geetha Balakrishna R (2010) Enhanced Bactericidal Activity of Modified Titania in Sunlight against Pseudomonas aeruginosa, a Water-Borne Pathogen. Photochem Photobiol 86(5):1127–1134.  https://doi.org/10.1111/j.1751-1097.2010.00781.x CrossRefGoogle Scholar
  193. Takata Y, Hidaka S, Cao JM, Nakamura T, Yamamoto H, Masuda M, Ito T (2005) Effect of surface wettability on boiling and evaporation. Energy 30(2–4):209–220.  https://doi.org/10.1016/j.energy.2004.05.004 CrossRefGoogle Scholar
  194. Teh CM, Mohamed AR (2011) Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. J Alloys Compd 509(5):1648–1660.  https://doi.org/10.1016/j.jallcom.2010.10.181 CrossRefGoogle Scholar
  195. Tung WS, Daoud WA (2009) Effect of wettability and silicone surface modification on the self-cleaning functionalization of wool. J Appl Polym Sci 112(1):235–243.  https://doi.org/10.1002/app.29396 CrossRefGoogle Scholar
  196. Tung WS, Daoud WA (2011) Self-cleaning fibers via nanotechnology: a virtual reality. J Mater Chem 21(22):7858–7869.  https://doi.org/10.1039/C0JM03856C CrossRefGoogle Scholar
  197. Tüysüz H, Chan CK (2013) Preparation of amorphous and nanocrystalline sodium tantalum oxide photocatalysts with porous matrix structure for overall water splitting. Nano Energy 2(1):116–123.  https://doi.org/10.1016/j.nanoen.2012.08.003 CrossRefGoogle Scholar
  198. Ullattil SG, Narendranath SB, Pillai SC, Periyat P (2018) Black TiO2 Nanomaterials: A Review of Recent Advances. Chem Eng J 343:708–736.  https://doi.org/10.1016/j.cej.2018.01.069 CrossRefGoogle Scholar
  199. Vega-Morales T, Sosa-Ferrera Z, Santana-Rodríguez JJ (2010) Determination of alkylphenol polyethoxylates, bisphenol-A, 17α-ethynylestradiol and 17β-estradiol and its metabolites in sewage samples by SPE and LC/MS/MS. J Hazard Mater 183(1–3):701–711.  https://doi.org/10.1016/j.jhazmat.2010.07.083 CrossRefGoogle Scholar
  200. Venieri D, Chatzisymeon E, Sofianos SS, Politi E, Xekoukoulotakis NP, Katsaounis A, Mantzavinos D (2012) Removal of faecal indicator pathogens from waters and wastewaters by photoelectrocatalytic oxidation on TiO2/Ti films under simulated solar radiation. Environ Sci Pollut Res 19(9):3782–3790.  https://doi.org/10.1007/s11356-012-0768-5
  201. Venieri D, Chatzisymeon E, Politi E, Sofianos SS, Katsaounis A, Mantzavinos D (2013) Photoelectrocatalytic disinfection of water and wastewater: performance evaluation by qPCR and culture techniques. J Water Health 11(1):21–29.  https://doi.org/10.2166/wh.2012.208 CrossRefGoogle Scholar
  202. Vidal A, Dıaz AI, El Hraiki A, Romero M, Muguruza I, Senhaji F, González J (1999) Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies. Catal Today 54(2–3):283–290.  https://doi.org/10.1016/S0920-5861(99)00189-3 CrossRefGoogle Scholar
  203. Vignesh K, Hariharan R, Rajarajan M, Suganthi A (2013) Visible light assisted photocatalytic activity of TiO2–metal vanadate (M= Sr, Ag and Cd) nanocomposites. Mater Sci Semicond Process 16:1521–1530CrossRefGoogle Scholar
  204. Vignesh K, Priyanka R, Hariharan R, Rajarajan M, Suganthi A (2014a) Fabrication of CdS and CuWO4 modified TiO2 nanoparticles and its photocatalytic activity under visible light irradiation. J Ind Eng Chem 20:435–443.  https://doi.org/10.1016/j.jiec.2013.04.038
  205. Vignesh K, Suganthi A, Min B-K, Kang M (2014b) Photocatalytic activity of magnetically recoverable MnFe2O4/g-C3N4/TiO2 nanocomposite under simulated solar light irradiation. J Mol Catal A Chem 395:373–383.  https://doi.org/10.1016/j.molcata.2014.08.040 CrossRefGoogle Scholar
  206. Wang X, Lim TT (2010) Solvothermal synthesis of C–N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor. Appl Catal B Environ 100(1–2):355–364  https://doi.org/10.1016/j.apcatb.2010.08.012 CrossRefGoogle Scholar
  207. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388(6641):431–432.  https://doi.org/10.1038/41233 CrossRefGoogle Scholar
  208. Wang P, Fane AG, Lim TT (2013) Evaluation of a submerged membrane vis-LED photoreactor (sMPR) for carbamazepine degradation and TiO2 separation. Chem Eng J 215:240–251  https://doi.org/10.1016/j.cej.2012.10.075 CrossRefGoogle Scholar
  209. Wang D, Li Y, Puma GL, Wang C, Wang P, Zhang W, Wang Q (2015) Mechanism and experimental study on the photocatalytic performance of Ag/AgCl@ chiral TiO2 nanofibers photocatalyst: The impact of wastewater components. J Hazard Mater 285:277–284  https://doi.org/10.1016/j.jhazmat.2014.10.060 CrossRefGoogle Scholar
  210. Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K (1999) Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 30;351(1–2):260–263.  https://doi.org/10.1016/S0040-6090(99)00205-9 CrossRefGoogle Scholar
  211. Wei Z, Sun J, Xie Z, Liang M, Chen S (2010) Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process. J Hazard Mater 15;177(1–3):814–821.  https://doi.org/10.1016/j.jhazmat.2009.12.106 CrossRefGoogle Scholar
  212. Wenderich K, Mul G (2016) Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem Rev 116:14587–14619.  https://doi.org/10.1021/acs.chemrev.6b00327 CrossRefGoogle Scholar
  213. Wold A (1993) Photocatalytic properties of titanium dioxide (TiO2). Chem Mater 5(3):280–283.  https://doi.org/10.1021/cm00027a008 CrossRefGoogle Scholar
  214. Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J Am Chem Soc 132(7):2132–2133.  https://doi.org/10.1021/ja910091z CrossRefGoogle Scholar
  215. Wu JC, Chiou CH (2008) Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal Commun 9(10):2073–2076.  https://doi.org/10.1016/j.catcom.2008.04.004 CrossRefGoogle Scholar
  216. Wu JC, Lin HM, Lai CL (2005) Photo reduction of CO2 to methanol using optical-fiber photoreactor. Appl Catal A Gen 296(2):194–200.  https://doi.org/10.1016/j.apcata.2005.08.021 CrossRefGoogle Scholar
  217. Xie TH, Lin J (2007) Origin of photocatalytic deactivation of TiO2 film coated on ceramic substrate. J Phys Chem C 111(27):9968–9974.  https://doi.org/10.1021/jp072334h CrossRefGoogle Scholar
  218. Xin Y, Liu H, Han L, Zhou Y (2011) Comparative study of photocatalytic and photoelectrocatalytic properties of alachlor using different morphology TiO2/Ti photoelectrodes. J Hazard Mater 192(3):1812–1818.  https://doi.org/10.1016/j.jhazmat.2011.07.005 CrossRefGoogle Scholar
  219. Xu H, Ouyang S, Li P, Kako T, Ye J (2013) High-active anatase TiO2 nanosheets exposed with 95%{100} facets toward efficient H2 evolution and CO2 photoreduction. ACS Appl Mater Interfaces 5(4):1348–1354.  https://doi.org/10.1021/am302631b CrossRefGoogle Scholar
  220. Yadav HM, Otari SV, Koli VB, Mali SS, Hong CK, Pawar SH, Delekar SD (2014) Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. J Photochem Photobiol A Chem 280:32–38.  https://doi.org/10.1016/j.jphotochem.2014.02.006 CrossRefGoogle Scholar
  221. Yaghoubi H, Taghavinia N, Alamdari EK (2010) Self cleaning TiO2 coating on polycarbonate: surface treatment, photocatalytic and nanomechanical properties. Surf Coat Technol 204(9–10):1562–1568.  https://doi.org/10.1016/j.surfcoat.2009.09.085 CrossRefGoogle Scholar
  222. Yang K, Pu W, Tan Y, Zhang M, Yang C, Zhang J (2014) Enhanced photoelectrocatalytic activity of Cr-doped TiO2 nanotubes modified with polyaniline. Mater Sci Semicond Process 27:777–784.  https://doi.org/10.1016/j.mssp.2014.08.007 CrossRefGoogle Scholar
  223. Yao X, Zhao R, Chen L, Du J, Tao C, Yang F, Dong L (2017) Selective catalytic reduction of NOx by NH3 over CeO2 supported on TiO2: Comparison of anatase, brookite, and rutile. Appl Catal B Environ 208:82–93.  https://doi.org/10.1016/j.apcatb.2017.02.060 CrossRefGoogle Scholar
  224. Ye SY, Fan ML, Song XL, Luo SC (2010) Enhanced photocatalytic disinfection of P. expansum in cold storage using a TiO2/ACF film. Int J Food Microbiol 136(3):332–339.  https://doi.org/10.1016/j.ijfoodmicro.2009.09.028 CrossRefGoogle Scholar
  225. Ying GG, Kookana RS, Ru YJ (2002) Occurrence and fate of hormone steroids in the environment. Environ Int 28(6):545–451.  https://doi.org/10.1016/S0160-4120(02)00075-2 CrossRefGoogle Scholar
  226. Yu JC, Ho W, Lin J, Yip H, Wong PK (2003) Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ Sci Technol 37(10):2296–2301.  https://doi.org/10.1021/es0259483 CrossRefGoogle Scholar
  227. Yu JC, Ho W, Yu J, Yip H, Wong PK, Zhao J (2005) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 39(4):1175–1179.  https://doi.org/10.1021/es035374h CrossRefGoogle Scholar
  228. Yui T, Kan A, Saitoh C, Koike K, Ibusuki T, Ishitani O (2011) Photochemical reduction of CO2 using TiO2: effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2. ACS Appl Mater Interfaces 3(7):2594–2600.  https://doi.org/10.1021/am200425y CrossRefGoogle Scholar
  229. Yurdakal S, Loddo V, Augugliaro V, Berber H, Palmisano G, Palmisano L (2007) Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: Mechanism and kinetics. Catal Today 129(1–2):9–15.  https://doi.org/10.1016/j.cattod.2007.06.044 CrossRefGoogle Scholar
  230. Zanoni MV, Sene JJ, Anderson MA (2003) Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes. J Photochem Photobiol A Chem 157(1):55–63.  https://doi.org/10.1016/S1010-6030(02)00320-9 CrossRefGoogle Scholar
  231. Zhang Z, Wang CC, Zakaria R, Ying JY (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102(52):10871–10878.  https://doi.org/10.1021/jp982948+ CrossRefGoogle Scholar
  232. Zhang Z, Yuan Y, Liang L, Cheng Y, Shi G, Jin L (2008) Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation. J Hazard Mater 158(2–3):517–522.  https://doi.org/10.1016/j.jhazmat.2008.01.118 CrossRefGoogle Scholar
  233. Zhang L, Dillert R, Bahnemann D, Vormoor M (2012) Photo-induced hydrophilicity and self-cleaning: models and reality. Energy Environ Sci 5(6):7491–7507.  https://doi.org/10.1039/C2EE03390A CrossRefGoogle Scholar
  234. Zhang J, Zhang X, Dong S, Zhou X, Dong S (2016) N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight. J Photochem Photobiol A Chem 325:104–110.  https://doi.org/10.1016/j.jphotochem.2016.04.012 CrossRefGoogle Scholar
  235. Zhao C, Pelaez M, Dionysiou DD, Pillai SC, Byrne JA, O'Shea KE (2014) UV and visible light activated TiO2 photocatalysis of 6-hydroxymethyl uracil, a model compound for the potent cyanotoxin cylindrospermopsin. Catal Today 224:70–76.  https://doi.org/10.1016/j.cattod.2013.09.042 CrossRefGoogle Scholar
  236. Zhou H, Li X, Fan T, Osterloh FE, Ding J, Sabio EM, Zhang D, Guo Q (2010) Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis. Adv Mater 22(9):951–956.  https://doi.org/10.1002/adma.200902039 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental Science, School of ScienceInstitute of Technology SligoSligoRepublic of Ireland
  2. 2.Department of ChemistryKongju National UniversityGongjuRepublic of Korea

Personalised recommendations