Advertisement

Innovations in Antimicrobial Engineered Nanomaterials

  • Marcela P. Bernardo
  • Francys K. V. Moreira
  • Luiz H. C. Mattoso
  • Sebastian Raja
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 25)

Abstract

The threat caused by drug-resistant pathogens represents a great concern to several economic sectors. This issue has intensified the development of more efficient antimicrobial products that could be safe not only for medical, pharmaceutical, water disinfection and food applications but also for reduced environmental impact. Nanotechnology now emerges as a powerful tool for scientists and engineers to develop engineered nanomaterials with remarkable antimicrobial activity. The potential of engineered nanomaterials is now certain to benefit different areas, such as medicine, food, pharmaceutical, and agriculture, once higher antimicrobial effectiveness implies in reduced content of antimicrobial compounds, thereby reducing cytotoxicity effects as well as environmental impact to different forms of life. This chapter summarizes the most recent achievements on antimicrobial engineered nanomaterials intended for better medicine, cosmetics, environmental, and food applications with emphasis on (i) new silver-based hybrid nanomaterials, (ii) new bioinspired antimicrobial nanoparticles, (iii) new antimicrobial nanostructures derived from layered minerals, (iv) recent developments on antimicrobial polymer nanocomposites, and finally (v) some recent trends in nanotechnological antimicrobial products available at the European market. The remarkable importance of antimicrobial engineered nanomaterials emerges from the combination of different nanomaterials so that main advantages of each are built together into new, revolutionary systems capable of solving the pathogen infection issue.

Keywords

Pathogen infestation Biocidal effect Antimicrobial agent Nanomaterials Nanosilver Carbon nanotubes Layered double hydroxides Polymer nanocomposites Antibacterial consumer goods Nanoscience 

Notes

Acknowledgments

Authors thank Embrapa, DEMa/UFSCar, FAPESP, CNPq, FAPESP (Proc. No. 2015/00094-0; Proc. No. 2017/22017-3), MCTI/SISNANO, and REDEAGRONANO for the financial support.

References

  1. Aani SA, Gomez V, Wright CJ, Hilal N (2017) Fabrication of antibacterial mixed matrix nanocomposite membranes using hybrid nanostructure of silver coated multi-walled carbon nanotubes. Chem Eng J 326:721–736.  https://doi.org/10.1016/j.cej.2017.06.029 CrossRefGoogle Scholar
  2. Abreu AS, Oliveira M, Rodrigues De SA, Cerqueira MA, Vicente AA, Machado AV (2015) Antimicrobial nanostructured starch based films for packaging. Carbohydr Polym 129:127–134.  https://doi.org/10.1016/j.carbpol.2015.04.021 CrossRefGoogle Scholar
  3. Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry. Review LWT Food Sci Technol 43(6):837–842.  https://doi.org/10.1016/j.lwt.2010.01.021
  4. Alsaleh NB, Brown JM (2018) Immune responses to engineered nanomaterials: current understanding and challenges. Curr Opin Toxicol 10:8–14.  https://doi.org/10.1016/j.cotox.2017.11.011 CrossRefGoogle Scholar
  5. Alzate P, Zalduendo PM, Gerschenson L, Flores SK (2016) Micro and nanoparticles of native and modified cassava starches as carriers of the antimicrobial potassium sorbate. Starch/Stärke 68:1038–1047.  https://doi.org/10.1002/star.2016000981038 CrossRefGoogle Scholar
  6. Ameeduzzafar, Imam SS, Bukhari SNA, Ahmad J, Ali A (2018) Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: in-vitro characterization, ocular tolerance and antibacterial activity. Int J Biol Macromol 108:650–659.  https://doi.org/10.1016/j.ijbiomac.2017.11.170 CrossRefGoogle Scholar
  7. Arora D, Sharma N, Sharma V, Abrol V, Shankar R, Jaglan S (2016) An update on polysaccharide-based nanomaterials for antimicrobial applications. Appl Microbiol Biotechnol 100:2603–2615.  https://doi.org/10.1007/s00253-016-7315-0 CrossRefGoogle Scholar
  8. Balagna C, Irfan M, Perero S, Miola M, Maina G, Santella D, Simone A (2017) Characterization of antibacterial silver nanocluster/silica composite coating on high performance Kevlar® textile. Surf Coat Technol 321:438–447.  https://doi.org/10.1016/j.surfcoat.2017.05.009 CrossRefGoogle Scholar
  9. Barzegar H, Azizi MH, Barzegar M, Hamidi-Esfahani Z (2014) Effect of potassium sorbate on antimicrobial and physical properties of starch-clay nanocomposite films. Carbohydr Polym 110:26–31.  https://doi.org/10.1016/j.carbpol.2014.03.092 CrossRefGoogle Scholar
  10. Bilal M, Rasheed T, Muhammad H, Iqbal N, Hu H, Zhang X (2017) Silver nanoparticles: biosynthesis and antimicrobial potentialities. Int J Antimicrob Agents 49:137–152.  https://doi.org/10.3923/ijp.2017.832.845 CrossRefGoogle Scholar
  11. Bugatti V, Gorrasi G, Montanari F, Nocchetti M, Tammaro L, Vittoria V (2011) Modified layered double hydroxides in polycaprolactone as a tunable delivery system: In vitro release of antimicrobial benzoate derivatives. Appl Clay Sci 52:1–2.  https://doi.org/10.1016/j.clay.2011.01.025 CrossRefGoogle Scholar
  12. Carja G, Niiyama H, Ciobanu G, Aida T (2007) Towards new drugs formulations: Gentamicin-anionic clay as nanohybrids. Mater Sci Eng C 27:1129–1132.  https://doi.org/10.1016/j.msec.2006.07.017 CrossRefGoogle Scholar
  13. Chakraborti M, Jackson JK, Plackett D, Gilchrist SE, Burt HM (2012) The application of layered double hydroxide clay (LDH)-poly(lactide-co- glycolic acid) (PLGA) film composites for the controlled release of antibiotics. J Mater Sci Mater Med 23(7):1705–1713.  https://doi.org/10.1007/s10856-012-4638-y CrossRefGoogle Scholar
  14. Chen C, Gunawan P, Lou XW, Xu R (2012) Silver nanoparticles deposited layered double hydroxide nanoporous coatings with excellent antimicrobial activities. Adv Funct Mater 22(4):780–787.  https://doi.org/10.1002/adfm.201102333 CrossRefGoogle Scholar
  15. Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52:1636–1653.  https://doi.org/10.1002/anie.201205923 CrossRefGoogle Scholar
  16. Cohen E, Joseph T, Lapides I, Yariv S (2005) The adsorption of berberine by montmorillonite and thermo-XRD analysis of the organo-clay complex. Clay Miner 40(2):223–232.  https://doi.org/10.1180/0009855054020168 CrossRefGoogle Scholar
  17. Costa JR, Silva NC, Sarmento B, Pintado M (2015) Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. Eur J Clin Microbiol Infect Dis 34(6):1255–1262.  https://doi.org/10.1007/s10096-015-2344-7 CrossRefGoogle Scholar
  18. Costantino U, Bugatti V, Gorrasi G, Montanari F, Nocchetti M, Tammaro L, Vittoria V (2009) New polymeric composites based on poly(ε-caprolactone) and layered double hydroxides containing antimicrobial species. ACS Appl Mater Interfaces 1(3):668–677.  https://doi.org/10.1021/am8001988 CrossRefGoogle Scholar
  19. Da Rosa CG, Maciel MVOB, de Carvalho SB, de Melo APZ, Jummes B, da Silva T, Martelli SM, Villetti MA, Bertoldi FC, Barreto PLM (2015) Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes. Colloids Surf A Physicochem Eng Asp 481:337–344.  https://doi.org/10.1016/j.colsurfa.2015.05.019 CrossRefGoogle Scholar
  20. Das MR, Sarma RK, Saikia R, Kale VS, Shelke MV, Sengupta P (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B Biointerfaces 83(1):16–22.  https://doi.org/10.1016/j.colsurfb.2010.10.033 CrossRefGoogle Scholar
  21. De Marchi JGB, Jornada DS, Silva FK, Freitas AL, Fuentefria AM, Pohlmann AR, Guterres SS (2017) Triclosan resistance reversion by encapsulation in chitosan-coated-nanocapsule containing α-bisabolol as core: development of wound dressing. Int J Nanomedicine 12:7855–7868.  https://doi.org/10.2147/IJN.S143324 CrossRefGoogle Scholar
  22. Djebbi MA, Elabed A, Bouaziz Z, Sadiki M, Elabed S, Namour P, Jaffrezic-Renault N, Amara ABH (2016a) Delivery system for berberine chloride based on the nanocarrier ZnAl-layered double hydroxide: physicochemical characterization, release behavior and evaluation of anti-bacterial potential. Int J Pharm 515:1–2.  https://doi.org/10.1016/j.ijpharm.2016.09.089 CrossRefGoogle Scholar
  23. Djebbi MA, Bouaziz Z, Elabed A, Sadiki M, Elabed S, Namour P, Jaffrezic-Renault N, Amara ABH (2016b) Preparation and optimization of a drug delivery system based on berberine chloride-immobilized MgAl hydrotalcite. Int J Pharm 506:1–2.  https://doi.org/10.1016/j.ijpharm.2016.04.048 CrossRefGoogle Scholar
  24. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12(3):789–799.  https://doi.org/10.1016/j.nano.2015.11.016 CrossRefGoogle Scholar
  25. Etewa SE, El-Maaty DAA, Hamza RS, Metwaly AS, Sarhan MH, Abdel-Rahman SA, Fathy GM, El-Shafey MA (2018) Assessment of spiramycin-loaded chitosan nanoparticles treatment on acute and chronic toxoplasmosis in mice. J Parasit Dis 42(1):102–113.  https://doi.org/10.1007/s12639-017-0973-8 CrossRefGoogle Scholar
  26. European Commission (2015) Definition – nanomaterials – environment – European Commission. online. European Commission available at: http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm
  27. Girase B, Depan D, Shah JS, Xu W, Misra RDK (2011) Silver-clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater Sci Eng C 31(8):1759–1766.  https://doi.org/10.1016/j.msec.2011.08.007 CrossRefGoogle Scholar
  28. Gorrasi G, Bugatti V, Vittoria V (2012) Pectins filled with LDH-antimicrobial molecules: preparation, characterization and physical properties. Carbohydr Polym 89(1):132–137.  https://doi.org/10.1016/j.carbpol.2012.02.061 CrossRefGoogle Scholar
  29. Häffner SM, Nyström L, Nordström R, Xu ZP, Davoudi M, Schmidtchen S, Malmsten M (2017) Membrane interactions and antimicrobial effects of layered double hydroxide nanoparticles. Phys Chem Chem Phys 19(35):23832–23842.  https://doi.org/10.1039/C7CP02701J CrossRefGoogle Scholar
  30. Hajipour ML, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpoonshan V, Parak W, Mahmoundi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10).  https://doi.org/10.1016/j.tibtech.2012.06.004
  31. Heydari A, Alemzadeh I, Vossoughi M (2013) Functional properties of biodegradable corn starch nanocomposites for food packaging applications. Mater Des 50:954–961.  https://doi.org/10.1016/j.matdes.2013.03.084 CrossRefGoogle Scholar
  32. Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Kamal MA, Ashraf GM (2017) A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab 18(2):120–128.  https://doi.org/10.2174/1389200217666161201111146 CrossRefGoogle Scholar
  33. Iannuccelli V, Maretti E, Montorsi M, Rustichelli C, Sacchetti F, Leo E (2015) Gastroretentive montmorillonite-tetracycline nanoclay for the treatment of Helicobacter pylori infection. Int J Pharm 493:1–2.  https://doi.org/10.1016/j.ijpharm.2015.06.049 CrossRefGoogle Scholar
  34. Incoronato AL, Buonocore GG, Conte A, Lavorgna M, Del Nobile MA (2010) Active systems based on silver-montmorillonite nanoparticles embedded into bio-based polymer matrices for packaging applications. J Food Prot 73(12):2256.  https://doi.org/10.4315/0362-028X-73.12.2256 CrossRefGoogle Scholar
  35. Ismail NS, Gopinath SCB (2017) Enhanced antibacterial effect by antibiotic loaded starch nanoparticle. J Assoc Arab Uni Basic Appl Sci 24:136–140.  https://doi.org/10.1016/j.jaubas.2016.10.005 CrossRefGoogle Scholar
  36. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337.  https://doi.org/10.1016/j.biotechadv.2011.01.005 CrossRefGoogle Scholar
  37. Jayrajsinh S, Shankar G, Agrawal YK, Bakre L (2017) Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review. J Drug Deliv Sci Technol 39:200–209.  https://doi.org/10.1016/j.jddst.2017.03.023 CrossRefGoogle Scholar
  38. Jung J, Kasi G, Seo J (2018) Development of functional antimicrobial papers using chitosan/starch-silver nanoparticles. Int J Biol Macromol 112:530–553.  https://doi.org/10.1016/j.ijbiomac.2018.01.155 CrossRefGoogle Scholar
  39. Kanmani P, Rhim JW (2014) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll 35:644–652.  https://doi.org/10.1016/j.foodhyd.2013.08.011 CrossRefGoogle Scholar
  40. Kevadiya BD, Rajkumar S, Bajaj HC, Chettiar SS, Gosai K, Brahmbhatt H, Bhatt AS, Barvaliya YK, Dave GS, Kothari RK (2014) Biodegradable gelatin-ciprofloxacin-montmorillonite composite hydrogels for controlled drug release and wound dressing application. Colloids Surf B Biointerfaces 122:175–183.  https://doi.org/10.1016/j.colsurfb.2014.06.051 CrossRefGoogle Scholar
  41. Kim JP, Kim JH, Kim J, Lee SN, Park H (2016) A nanofilter composed of carbon nanotube-silver composites for virus removal and antibacterial activity improvement. J Environ Sci 42:275–283.  https://doi.org/10.1016/j.jes.2014.11.017 CrossRefGoogle Scholar
  42. Lavorgna M, Piscitelli F, Mangiacapra P, Buonocore GG (2010) Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydr Polym 82(2):291–298.  https://doi.org/10.1016/j.carbpol.2010.04.054 CrossRefGoogle Scholar
  43. Ma Z, Garrido-Maestu A, Jeong KC (2017) Application, mode of action, and in vivo activity of chitosan and its micro and nanoparticles as antimicrobial agents: a review. Carbohydr Polym 176:257–265.  https://doi.org/10.1016/j.carbpol.2017.08.08 CrossRefGoogle Scholar
  44. Mahor A, Prajapati SK, Verma A, Gupta R, Iyer AK, Kesharwani P (2016) Moxifloxacin loaded gelatin nanoparticles for ocular delivery: formulation and in-vitro, in-vivo evaluation. J Colloid Interface Sci 483:132–138.  https://doi.org/10.1016/j.jcis.2016.08.018 CrossRefGoogle Scholar
  45. Martins JT, Bourbon AI, Pinheiro AC, Souza BWS, Cerqueira MA, Vicente AA (2013) Biocomposite films based on κ-carrageenan/locust bean gum blends and clays: physical and antimicrobial properties. Food Bioprocess Technol 6(8):2081–2092.  https://doi.org/10.1007/s11947-012-0851-4 CrossRefGoogle Scholar
  46. Melo NFCB, Soares BLM, Diniz KM, Leal CF, Canto D, Flores MAP, Tavares-Filho JHC, Galembeck A, Stamford TLM, Stamford-Arnaud TM, Stamford TCM (2018) Effects of fungal chitosan nanoparticles as eco-friendly edible coatings on the quality of postharvest table grapes. Postharvest Biol Technol 139:56–66.  https://doi.org/10.1016/j.postharvbio.2018.01.014 CrossRefGoogle Scholar
  47. Motshekga SC, Ray SS, Maity A (2018) Synthesis and characterization of alginate beads encapsulated zinc oxide nanoparticles for bacteria disinfection in water. J Colloid Interface Sci 512:686–692.  https://doi.org/10.1016/j.jcis.2017.10.098 CrossRefGoogle Scholar
  48. Noronha VT, Paula JÁ, Durán G, Galembeck A, Cogo-Müller K, Franz-Montan M, Durán N (2017) Silver nanoparticles in dentistry. Dent Mater 33:1110–1116.  https://doi.org/10.1016/j.dental.2017.07.002 CrossRefGoogle Scholar
  49. Pan K, Chen H, Davidson PM, Zhong Q (2014) Thymol nanoencapsulated by sodium caseinate: physical and antilisterial properties. J Agric Food Chem 62:1649–1657.  https://doi.org/10.1021/jf4055402 CrossRefGoogle Scholar
  50. Panwar K, Jassal M, Agrawal AK (2018) Readily dispersible antimicrobial Ag – SiO2 Janus particles and their application on cellulosic fabric. Carbohydr Polym 187(2018):43–50.  https://doi.org/10.1016/j.carbpol.2018.01.076 CrossRefGoogle Scholar
  51. Park M, Lee CII, Seo YJ, Woo SR, Shin D, Choi J (2010) Hybridization of the natural antibiotic, cinnamic acid, with layered double hydroxides (LDH) as green pesticide. Environ Sci Pollut Res 17(1):203–209.  https://doi.org/10.1007/s11356-009-0235-0 CrossRefGoogle Scholar
  52. Park S, Ko Y, Jung H, Lee C, Woo K, Ko G (2018) Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments. Sci Total Environ 625:477–485.  https://doi.org/10.1016/j.scitotenv.2017.12.318 CrossRefGoogle Scholar
  53. Parolo ME, Avena MJ, Pettinari G, Zajonkovsky I, Valles JM, Baschini MT (2010) Antimicrobial properties of tetracycline and minocycline-montmorillonites. Appl Clay Sci 49(3):194.  https://doi.org/10.1016/j.clay.2010.05.005 CrossRefGoogle Scholar
  54. Pender DS, Vangala LM, Badwaik VD, Willis CB, Aguilar ZP, Sangoi TN, Paripelly R, Dakshinamurt R (2013) Bactericidal activity of starch-encapsulated gold nanoparticles. Front Biosci 18:993–1002CrossRefGoogle Scholar
  55. Perinelli DR, Fagioli L, Campana R, Lam JKW, Baffone W, Palmieri GF, Casettari L, Bonacucina G (2018) Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci 117:8–20.  https://doi.org/10.1016/j.ejps.2018.01.046 CrossRefGoogle Scholar
  56. Popova M, Lazarova H, Trusheva B, Popova M, Bankova V, Mihály J, Najdenski H, Tsvetkova I, Szegedi A (2018) Nanostructured silver silica materials as potential propolis carriers. Microporous Mesoporous Mater 263:28–33.  https://doi.org/10.1016/j.micromeso.2017.11.043 CrossRefGoogle Scholar
  57. Praphakar RA, Munusamy MA, Alarfaj AA, Suresh Kumar S, Rajan M (2017) Zn2+ cross-linked sodium alginate-g-allylamine-mannose polymeric nanocarrier of rifampicin for macrophage targeting tuberculosis nanotherapy. New J Chem 41(19):11324–11334.  https://doi.org/10.1039/c7nj01808h CrossRefGoogle Scholar
  58. Priebe M, Widmer J, Löwa NS, Abram S-L, Mottas I, Woischnig A-K, Brunetto PS, Khanna N, Bourquin C, Fromm KM (2017) Antimicrobial silver-filled silica nanorattles with low immunotoxicity in dendritic cells. Nanomedicine 13:11–22.  https://doi.org/10.1016/j.nano.2016.08.002 CrossRefGoogle Scholar
  59. Qiu C, Chang R, Yang J, Ge S, Xiong L, Zhao M, Li M, Sun Q (2017) Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains. Food Chem 221:1426–1433.  https://doi.org/10.1016/j.foodchem.2016.11.009 CrossRefGoogle Scholar
  60. Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents 49:137–152.  https://doi.org/10.1016/j.ijantimicag.2016.11.011 CrossRefGoogle Scholar
  61. Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H (2018) A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol 44:421–430.  https://doi.org/10.1016/j.jddst.2018.01.009 CrossRefGoogle Scholar
  62. Rapacz-Kmita A, Bućko MM, Stodolak-Zych E, Mikołajczyk M, Dudek P, Trybus M (2017) Characterisation, in vitro release study, and antibacterial activity of montmorillonite-gentamicin complex material. Mater Sci Eng C 70:471–478.  https://doi.org/10.1016/j.msec.2016.09.031 CrossRefGoogle Scholar
  63. Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54(16):5814–5822.  https://doi.org/10.1021/jf060658h CrossRefGoogle Scholar
  64. Rytwo G, Varman H, Bluvshtein N, König TN, Mendelovits A, Sandler A (2011) Adsorption of berberine on commercial minerals. Appl Clay Sci 51(1–2):43–50.  https://doi.org/10.1016/j.clay.2010.10.031 CrossRefGoogle Scholar
  65. Ryu SJ, Jung H, Oh JM, Lee JK, Choy JH (2010) Layered double hydroxide as novel antibacterial drug delivery system. J Phys Chem Solids 71(4):685–688.  https://doi.org/10.1016/j.jpcs.2009.12.066 CrossRefGoogle Scholar
  66. Salam MA, Obaid AY, El-Shishtawy RM, Mohamed SA (2017) Synthesis of nanocomposites of polypyrrole/carbon nanotubes/silver nano particles and their application in water disinfection. RSC Adv 7:16878–16884.  https://doi.org/10.1039/c7ra01033h CrossRefGoogle Scholar
  67. Sharma C, Dhiman R, Rokana N, Panwar H (2017) Nanotechnology: An updated resource for food packaging. Front Microbiol 8:1735.  https://doi.org/10.3389/fmicb.2017.01735 CrossRefGoogle Scholar
  68. Shevlin D, O’Brien N, Cummins E (2018) Silver engineered nanoparticles in freshwater systems– likely fate and behaviour through natural attenuation processes. Sci Total Environ 621:1033–1046.  https://doi.org/10.1016/j.scitotenv.2017.10.123 CrossRefGoogle Scholar
  69. Suganya P, Vaseeharan B, Vijayakumar S, Balan B, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti. J Photochem Photobiol B Biol 173:404–411.  https://doi.org/10.1016/j.jphotobiol.2017.06.004 CrossRefGoogle Scholar
  70. Sun Z, Gu L, Zheng J, Zhang J, Wang L, Xu F, Lin C (2016) A controlled release strategy of antifouling agent in coating based on intercalated layered double hydroxides. Mater Lett 172:105–108.  https://doi.org/10.1016/j.matlet.2016.02.151 CrossRefGoogle Scholar
  71. Trikeriotis M, Ghanotakis DF (2007) Intercalation of hydrophilic and hydrophobic antibiotics in layered double hydroxides. Int J Pharm 332(1–2):176–184.  https://doi.org/10.1016/j.ijpharm.2006.09.031 CrossRefGoogle Scholar
  72. Tunç S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT – Food Sci Technol 44(2):465–472.  https://doi.org/10.1016/j.lwt.2010.08.018 CrossRefGoogle Scholar
  73. Wang Y, Zhang D (2012) Synthesis, characterization, and controlled release antibacterial behavior of antibiotic intercalated Mg-Al layered double hydroxides. Mater Res Bull 47(11):3185–3194.  https://doi.org/10.1016/j.materresbull.2012.08.029 CrossRefGoogle Scholar
  74. Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20(5).  https://doi.org/10.1016/j.drudis.2014.11.014
  75. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer – polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256.  https://doi.org/10.1016/j.progpolymsci.2010.04.002 CrossRefGoogle Scholar
  76. Wu TS, Wang KX, Li GD, Sun SY, Sun J, Chen JS (2010) Montmorillonite-supported Ag/TiO2 nanoparticles: an efficient visible-light bacteria photodegradation material. ACS Appl Mater Interfaces 2(2):544–550.  https://doi.org/10.1021/am900743d CrossRefGoogle Scholar
  77. Wu T, Xie A, Tan S, Cai X (2011) Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus. Colloids Surf B Biointerfaces 86(1):232–236.  https://doi.org/10.1016/j.colsurfb.2011.04.009 CrossRefGoogle Scholar
  78. Xia L, Xu M, Cheng G, Yang L, Guo Y, Li D, Fang D, Zhang Q, Liu H (2018) Facile construction of Ag nanoparticles encapsulated into carbon nanotubes with robust antibacterial activity. Carbon 130:775–781.  https://doi.org/10.1016/j.carbon.2018.01.073 CrossRefGoogle Scholar
  79. Yang M, Lianghua G, Bin Y, Li W, Sun Z, Zheng J, Zhang J, Hou J (2017) Antifouling composites with self-adaptive controlled release based on an active compound intercalated into layered double hydroxides. Appl Surf Sci 426:185–193.  https://doi.org/10.1016/j.apsusc.2017.07.207 CrossRefGoogle Scholar
  80. Youssef HF, Abdel-Aziz MS, Fouda FK (2017) Evaluation of antimicrobial activity of different silver-exchanged nano and micronized zeolites prepared by microwave technique. J Porous Mater 24(4):947–957.  https://doi.org/10.1007/s10934-016-0334-5 CrossRefGoogle Scholar
  81. Zimet P, Mombrú AW, Faccio R, Brugnini G, Miraballes I, Rufo C, Pardo H (2018) Optimization and characterization of nisin-loaded alginate-chitosan nanoparticles with antimicrobial activity in lean beef. LWT Food Sci Technol 91:107–116.  https://doi.org/10.1016/j.lwt.2018.01.015 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marcela P. Bernardo
    • 1
    • 3
  • Francys K. V. Moreira
    • 2
    • 3
  • Luiz H. C. Mattoso
    • 3
  • Sebastian Raja
    • 3
  1. 1.Department of ChemistryFederal University of São CarlosSão CarlosBrazil
  2. 2.Department of Materials Engineering – DEMaFederal University of São Carlos – UFSCarSão CarlosBrazil
  3. 3.National Nanotechnology Laboratory for AgribusinessEmbrapa InstrumentaçãoSão CarlosBrazil

Personalised recommendations