Advertisement

Third-Generation Solar Cells: Concept, Materials and Performance - An Overview

  • Soosaimanickam AnanthakumarEmail author
  • Jeyagopal Ram Kumar
  • Sridharan Moorthy Babu
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 23)

Abstract

The large scarcity of natural fuels in earth crust has triggered to search alternative energy reservoirs for the future generation of human life. Because of large abundancy, solar energy is considered as big hope for the future generation energy utilization for commercial as well as home applications. The scientific revolution achieved in synthesis and processing of semiconductor nanomaterials, organic conducting polymers have led into new dimension in fabrication of future-generation solar cells. Reduction in the dimension of semiconductor nanomaterials significantly influences on their structural and optical properties which is helpful for the excellent photon harvesting. Also, their large surface area is further favourable to assist with the attachment of several organic or inorganic compounds in order to functionalize them effectively. Developments that have been made in semiconducting organic polymers still encourage the fabrication of highly efficient, flexible solar cell devices on conducting substrates. Formation of nanocomposites, hybrids, alloy system, doping, etc. are successfully carried out on different kinds of inorganic semiconductor nanomaterials for the photovoltaic applications. The day-by-day improvement in terms of efficiency and new materials development predicts that the breakthrough to achieve highly stable, high-efficiency solar cell is about the near future. In this aspect, this chapter summarizes the development in the solar cells research of each category with general aspects. The important parameters and process that affects the performance of each category is outlined.

Keywords

Crystalline silicon Ruthenium dyes Quantum dots Semiconducting polymers Perovskite solar cells Charge transport Colloidal synthesis Redox electrolyte Open-circuit voltage 

Notes

Acknowledgements

The authors sincerely acknowledge DST (DST/TMC/SERI/FR/90), Govt. of India and DST-PURSE for funding the research.

References

  1. Abdou MSA, Orfino FP, Son Y, Holdcroft S (1997) Interaction of oxygen with conjugated polymers: charge transfer complex formation with poly(3-alkylthiophenes). J Am Chem Soc 119:4518–4524.  https://doi.org/10.1021/ja964229j CrossRefGoogle Scholar
  2. Ajayi FF, Kim K-Y, Chae K-J, Choi M-J, Chang IS, Kim IS (2010) Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system. Photochem Photobiol Sci 9:349–356.  https://doi.org/10.1039/B9PP00097F CrossRefGoogle Scholar
  3. Albero J, Clifford JN, Palomares E (2014) Quantum dot based molecular solar cells. Coord Chem Rev 263–264:53–64.  https://doi.org/10.1016/j.ccr.2013.07.005 CrossRefGoogle Scholar
  4. Anaraki EH, Kermanpur A, Mayer MT, Steier L, Ahmed T, Turren-Cruz S-H, Seo J, Luo J, Zakeeruddin SM, Tress WR, Edvinsson, Gratzel M, Hagfeldt A, Correa-Baena JP (2018) Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energ Lett 3(4):773–778.  https://doi.org/10.1021/acsenergylett.8b00055 CrossRefGoogle Scholar
  5. Bai Y, Meng X, Yang S (2018) Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Adv Energy Mater 8:1701883.  https://doi.org/10.1002/aenm.201701883 CrossRefGoogle Scholar
  6. Beard MC, Luther JM, Nozik AJ (2014) The promise and challenge of nanostructured solar cells. Nat Nanotechnol 9:951–954.  https://doi.org/10.1038/nnano.2014.292 CrossRefGoogle Scholar
  7. Blaszczyk A (2018) Strategies to improve the performance of metal-free dye-sensitized solar cells. Dyes Pigments 149:707–718.  https://doi.org/10.1016/j.dyepig.2017.11.045 CrossRefGoogle Scholar
  8. Brennan LJ, Purcell-Milton F, McKenna B, Watson TM, Gun’ko YK, Evans RC (2018) Large area quantum dot luminescent solar concentrators for use with dye-sensitized solar cells. J Mater Chem A 6:2671–2680.  https://doi.org/10.1039/C7TA04731B CrossRefGoogle Scholar
  9. Cardinaletti I, Vangerven T, Nagels S, Cornelissen R, Schreurs D, Hruby J, Vodnik J, Devisscher D, Kesters J, D’Haen J, Franquet A, Spampinato V, Conard T, Maes W, Deferme W, Manca JV (2018) Organic and perovskite solar cells for space applications. Solar Energ Mater Solar Cells 182:121–127.  https://doi.org/10.1016/j.solmat.2018.03.024 CrossRefGoogle Scholar
  10. Carey GH, Abdelhady AL, Ning Z, Thon SM, Bakr OM, Sargent EH (2015) Colloidal quantum dot solar cells. Chem Rev 115:12732–12763.  https://doi.org/10.1021/acs.chemrev.5b00063 CrossRefGoogle Scholar
  11. Castro-Hermosa S, Yadav SK, Vesce L, Guidobaldi A, Reale A, Di Carlo A, Brown TM (2016) Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules. J Phys D Appl Phys 50:033001.  https://doi.org/10.1088/1361-6463/50/3/033001 CrossRefGoogle Scholar
  12. Cecconi B, Manfredi N, Montini T, Fornasiero P, Abbotto A (2016) Dye-sensitized solar hydrogen production: the merging role of metal-free organic sensitizers. Eur J Org Chem 2016:5194–5215.  https://doi.org/10.1002/ejoc.201600653 CrossRefGoogle Scholar
  13. Celik D, Krueger M, Veit C, Schleiermacher HF, Zimmermann B, Allard S, Dumsch I, Scherf U, Rauscher, Niyamakom P (2012) Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticle surface treatments. Solar Energ Mat Solar Cells 98:433–440.  https://doi.org/10.1016/j.solmat.2011.11.049 CrossRefGoogle Scholar
  14. Chang J, Waclawik ER (2014) Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv 4:23505–23527.  https://doi.org/10.1039/C4RA02684E CrossRefGoogle Scholar
  15. Chang P, Li G, Zhan X, Yang Y (2018) Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics 12:131–142.  https://doi.org/10.1038/s41566-018-0104-9 CrossRefGoogle Scholar
  16. Chaurasia S, Lin JT (2016) Metal-free sensitizers for dye-sensitized solar cells. Chem Rec 16(3):2016.  https://doi.org/10.1002/tcr.201500288 CrossRefGoogle Scholar
  17. Chen H-Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon 3:649–653.  https://doi.org/10.1038/nphoton.2009.192 CrossRefGoogle Scholar
  18. Chen W, Zhang J, Xu G, Xue R, Li Y, Zhou Y, Hou J, Li Y (2018) A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater 30:1800855 (1–10).  https://doi.org/10.1002/adma.201800855 CrossRefGoogle Scholar
  19. Cheng P, Zhan X (2016) Stability of organic solar cells: challenges and strategies. Chem Soc Rev 45:2544–2582.  https://doi.org/10.1039/C5CS00593K CrossRefGoogle Scholar
  20. Chopra KL, Paulson PD, Dutta V (2004) Thin film solar cells: an overview. Prog Photovolt 12(2–3):69–92.  https://doi.org/10.1002/pip.541 CrossRefGoogle Scholar
  21. Crisp RW, Kroupa DM, Marshall AR, Miller EM, Zhang J, Beard MC, Luther JM (2015) Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells. Sci Rep 5:9945(1–6).  https://doi.org/10.1038/srep09945 CrossRefGoogle Scholar
  22. Dubey A, Adhikari N, Mabrouk S, Wu F, Chen K, Yang S, Qiao Q (2018) A strategic review on processing routes towards highly efficient perovskite solar cells. J Mater Chem A 6:2406–2431.  https://doi.org/10.1039/C7TA08277K CrossRefGoogle Scholar
  23. Edri E, Kirmayer S, Cahen D, Hodes G (2013) High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite. J Phys Chem Lett 4(6):897–902.  https://doi.org/10.1021/jz400348q CrossRefGoogle Scholar
  24. Ellingson RJ, Beard MC, Johnson JC, Yu P, Micic OI, Nozik AJ, Shabaev A, Efros AL (2005) Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett 5:865–871.  https://doi.org/10.1021/nl0502672 CrossRefGoogle Scholar
  25. Embden J, Chesman ASR, Jasieniak JJ (2015) The heat-up synthesis of colloidal nanocrystals. Chem Mater 27(7):2246–2285.  https://doi.org/10.1021/cm5028964 CrossRefGoogle Scholar
  26. Faber MS, Jin S (2014) Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ Sci 7:3519–3542.  https://doi.org/10.1039/C4EE01760A CrossRefGoogle Scholar
  27. Fan X, Zhang M, Wang X, Yang F, Meng X (2013) Recent progress in organic-inorganic hybrid solar cells. J Mater Chem A l:8694–8709.  https://doi.org/10.1039/C3TA11200D CrossRefGoogle Scholar
  28. Feng W, Li Y, Du J, Wang W, Zhong X (2016) Highly efficient and stable quasi-solid-state quantum dot-sensitized solar cells based on a superabsorbent polyelectrolyte. J Mater Chem A 4:1461–1468.  https://doi.org/10.1039/C5TA08209A CrossRefGoogle Scholar
  29. Freitas JN, Alves JPC, Nogueira AF (2018) Hybrid solar cells:effects of incorporation of inorganic nanoparticles into bulk heterojunction organic solar cells. In: Souza F, Leite E (eds) Nanoenergy. Springer, Cham, pp 1–68.  https://doi.org/10.1007/978-3-319-62800-4_1 CrossRefGoogle Scholar
  30. Goetzberger A, Luther J, Willeke G (2002) Solar cells: past, present, future. Sol Energ Mat Sol Cells 74(1–4):1–11.  https://doi.org/10.1016/S0927-0248(02)00042-9 CrossRefGoogle Scholar
  31. Greaney MJ, Das S, Webber DH, Bradforth SE, Brutchey RL (2012) Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange. ACS Nano 6(5):4222–4230.  https://doi.org/10.1021/nn3007509. CrossRefGoogle Scholar
  32. Greenham NC, Peng X, Alivisatos AP (1996) Charge separation and transport in conjugated polymer/semiconductor nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 54:17628–17637.  https://doi.org/10.1103/PhysRevB.54.17628 CrossRefGoogle Scholar
  33. Gunes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338.  https://doi.org/10.1021/cr050149z CrossRefGoogle Scholar
  34. Gur I, Fromer NA, Chen C-P, Kanaras AG, Alivisatos AP (2007) Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett 7(2):409–414.  https://doi.org/10.1021/nl062660t CrossRefGoogle Scholar
  35. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663.  https://doi.org/10.1021/cr900356p CrossRefGoogle Scholar
  36. Higashino T, Imahori H (2015) Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. Dalton Trans 44:448–463.  https://doi.org/10.1039/C4DT02756F CrossRefGoogle Scholar
  37. Jain SM, Phuyal D, Davies ML, Li M, Philippe B, Castro CD, Qiu Z, Kim J, Watson T, Tsoi WC, Karis O, Rensmo H, Boschloo G, Edvinsson T, Durrant JR (2018) An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energ 49:614–624.  https://doi.org/10.1016/j.nanoen.2018.05.003 CrossRefGoogle Scholar
  38. Jorgensen M, Norrman K, Krebs FC (2008) Stability/degradation of polymer solar cells. Solar Energ Mater Solar Cells 92:686–714.  https://doi.org/10.1016/j.solmat.2008.01.005 CrossRefGoogle Scholar
  39. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa JI, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51:15894–15897.  https://doi.org/10.1039/C5CC06759F CrossRefGoogle Scholar
  40. Kamat PV (2013) Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 4:908–918.  https://doi.org/10.1021/jz400052e CrossRefGoogle Scholar
  41. Kim J, Kim G, Back H, Kong J, Hwang I-W, Kim TK, Kwon S, Lee J-H, Lee J, Yu K, Lee C-L, Kang H, Lee K (2016) High-performance integrated perovskite and organic solar cells with enhanced fill factors and near-infrared harvesting. Adv Mater 28:3159–3165.  https://doi.org/10.1002/adma.201504555 CrossRefGoogle Scholar
  42. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic devices. J Am Chem Soc 131(17):6050–6051.  https://doi.org/10.1021/ja809598r. CrossRefGoogle Scholar
  43. Kouijzer S, Esiner S, Frijters CH, Turbiez M, Wienk MM, Janssen RAJ (2012) Efficient inverted tandem polymer solar cells with a solution-processed recombination layer. Adv Ener Mater 2:945–949.  https://doi.org/10.1002/aenm.201100773 CrossRefGoogle Scholar
  44. Kwon J, Im MJ, Kim CU, Won SH, Kang SB, Kang SH, Choi IT, Kim HK, Kim IH, Park JH, Choi KJ (2016) Two-terminal DSSC/silicon tandem solar cells exceeding 18% efficiency. Energy Environ Sci 9:3657–3665.  https://doi.org/10.1039/C6EE02296K CrossRefGoogle Scholar
  45. Law M, Beard MC, Choi S, Luther JM, Hanna MC, Nozik AJ (2008) Determining the internal quantum efficiency of PbSe nanocrystal solar cells with aid of an optical model. Nano Lett 8:3904–3910.  https://doi.org/10.1021/nl802353x CrossRefGoogle Scholar
  46. Leijtens T, Bush KA, Prasanna R, McGehee MD (2018) Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energ.  https://doi.org/10.1038/s41560-018-0190-4 CrossRefGoogle Scholar
  47. Lesnyak V, Gaponik N, Eychmuller A (2013) Colloidal semiconductor nanocrystals: the aqueous approach. Chem Soc Rev 42:2905–2929.  https://doi.org/10.1039/C2CS35285K CrossRefGoogle Scholar
  48. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6:153–161.  https://doi.org/10.1038/nphoton.2012.11 CrossRefGoogle Scholar
  49. Li Y, Xu G, Cui C, Li Y (2018) Flexible and semitransparent organic solar cells. Adv Energy Mater 8:1701791(1–28).  https://doi.org/10.1002/aenm.201701791 CrossRefGoogle Scholar
  50. Liang Y, Wang Y, Mu C, Wang S, Wang X, Xu D, Sun L (2018) Achieving high open-circuit voltages upto 1.57 V in hole-transport-material-free MAPbBr3 solar cells with carbon electrodes. Adv Energy Mater 8(4):1701159.  https://doi.org/10.1002/aenm.201701159 CrossRefGoogle Scholar
  51. Liu J, Wang W, Yu H, Wu Z, Peng J, Cao Y (2008) Surface ligand effects in MEH-PPV/TiO2 hybrid solar cells. Sol Energ Mat Sol Cells 92(11):1403–1409.  https://doi.org/10.1016/j.solmat.2008.05.017 CrossRefGoogle Scholar
  52. Liu F, Hou T, Xu X, Sun L, Zhou J, Zhao X, Zhang S (2018) Recent advances in nonfullerene acceptors for organic solar cells. Macromol Rapid Commun 39:1700555(1–54).  https://doi.org/10.1002/marc.201700555 CrossRefGoogle Scholar
  53. Low FW, Lai CW (2018) Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: a review. Renew Sust Energ Rev 82(1):103–125.  https://doi.org/10.1016/j.rser.2017.09.024 CrossRefGoogle Scholar
  54. Luther JM, Gao J, Lloyd MT, Semonin OE, Beard MC, Nozik AJ (2010) Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv Mater 22:3704–3707 (2010).  https://doi.org/10.1002/adma.201001148 CrossRefGoogle Scholar
  55. Matteocci M, Razza S, Giacomo FD, Casaluci S, Mincuzzi G, Brown TM, D’Epifanio A, Licoccia S, Carlo DA (2014) Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. Phys Chem Chem Phys 16:3918–3923.  https://doi.org/10.1039/C3CP55313B CrossRefGoogle Scholar
  56. Miyasaka T (2017) Evolution of organic and hybrid photovoltaics on interdiscipline of science. Electrochemistry 85(5):221.  https://doi.org/10.5796/electrochemistry.85.221 CrossRefGoogle Scholar
  57. Moule AJ, Chang L, Thambidurai C, Vidu R, Stroeve P (2012) Hybrid solar cells: basic principles and the role of ligands. J Mater Chem 22:2351–2368.  https://doi.org/10.1039/C1JM14829J CrossRefGoogle Scholar
  58. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann Rev Mater Sci 30:545–610.  https://doi.org/10.1146/annurev.matsci.30.1.545 CrossRefGoogle Scholar
  59. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E= S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715.  https://doi.org/10.1021/ja00072a025 CrossRefGoogle Scholar
  60. Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3:8970–8980.  https://doi.org/10.1039/C4TA04994B CrossRefGoogle Scholar
  61. Noh JH, Im SH, Heo JH, Mandal TN, Seok S (2013) Chemical management for colourful. efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769.  https://doi.org/10.1021/nl400349b CrossRefGoogle Scholar
  62. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740.  https://doi.org/10.1038/353737a0 CrossRefGoogle Scholar
  63. Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey SS, Ma T, Hayase S (2014) CH3NH3SnxPb1-xI3 perovskite solar cells covering up to 1060 nm. J Phys Chem Lett 5:1004–1011.  https://doi.org/10.1021/jz5002117 CrossRefGoogle Scholar
  64. Park N-G (2015) Perovskite solar cells: an emerging photovoltaic technology. Mater Today 18(2):65–72.  https://doi.org/10.1016/j.mattod.2014.07.007 CrossRefGoogle Scholar
  65. Quiroz COR, Shen Y, Salvador M, Forberich K, Schrenker N, Spyropoulos GD, Heumuller T, Wilkinson B, Kirchartz T, Spiecker E, Verlinden PJ, Zhang X, Green MA, Baillie AH, Brabec CJ (2018) Balancing electrical and optical losses for efficient 4-terminal Si-perovskite solar cells with solution processed percolation electrodes. J Mater Chem A 6:3583–3592CrossRefGoogle Scholar
  66. Rao A, Friend RH (2017) Harnessing singlet exciton fission to break the Shockley-queisser limit. Nat Rev Mater 2:17063.  https://doi.org/10.1038/natrevmats.2017.63 CrossRefGoogle Scholar
  67. Rauda IE, Senter R, Tolbert SH (2013) Directing anisotropic charge transport of layered organic-inorganic hybrid perovskite semiconductors in porous templates. J Mater Chem C 1:1423–1427.  https://doi.org/10.1039/C2TC00239F CrossRefGoogle Scholar
  68. Reiss P, Couderc E, Girolamo JD, Pron A (2011) Conjugated polymers/semiconductor nanocrystals hybrid materials-preparation, electrical transport properties and applications. Nanoscale 3:446–489.  https://doi.org/10.1039/C0NR00403K CrossRefGoogle Scholar
  69. Sabatini RP, Eckenhoff WT, Orchard A, Liwosz KR, Detty MR, Watson DF, McCamant DW, Eisenberg R (2014) From seconds to femtoseconds: solar hydrogen production and transient absorption of chalcogenorhodamine dyes. J Am Chem Soc 136:7740–7750.  https://doi.org/10.1021/ja503053s CrossRefGoogle Scholar
  70. Said AJ, Poize G, Martini C, Ferry D, Marine W, Giorgio S, Fages F, Hocq J, Boucle J, Nelson J, Durrant JR, Ackerman J (2010) Hybrid bulk heterojunction solar cells based on P3HT and porphyrin-modified ZnO nanorods. J Phys Chem C 114(25):11273–11278.  https://doi.org/10.1021/jp911125w CrossRefGoogle Scholar
  71. Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U (2010) Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition. ACS Nano 4:5962–5968.  https://doi.org/10.1021/nn1018208 CrossRefGoogle Scholar
  72. Saliba M, Matsui T, Domanski K, Seo J-Y, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A, Gratzel M (2016) Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354:206–209.  https://doi.org/10.1126/science.aah5557 CrossRefGoogle Scholar
  73. Saliba M, Correa-Baena J-P, Gratzel M, Hagfeldt A, Abate A (2018) Perovskite solar cells: from the atomic level to film quality and device performance. Angew Chem Int Ed 57:2554–2569.  https://doi.org/10.1002/anie.201703226 CrossRefGoogle Scholar
  74. Saunders BR, Turner ML (2008) Nanoparticle-polymer photovoltaic cells. Adv Colloid Inter Sci 138(1):1–23.  https://doi.org/10.1016/j.cis.2007.09.001 CrossRefGoogle Scholar
  75. Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polymer Sci 38:1929–1940.  https://doi.org/10.1016/j.progpolymsci.2013.05.001 CrossRefGoogle Scholar
  76. Semonin OE, Luther JM, Choi S, Chen H-Y, Gao J, Nozik AJ, Beard MC (2011) Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334:1530–1533.  https://doi.org/10.1126/science.1209845 CrossRefGoogle Scholar
  77. Seo G, Seo J, Ryu S, Yin W, Ahn TK, Seok S II (2014) Enhancing the performance of sensitized solar cells with PbS/CH3NH3PbI3 core/shell quantum dots. J Phys Chem Lett 5(11):2015–2020.  https://doi.org/10.1021/jz500815h CrossRefGoogle Scholar
  78. Seok S, Gratzel M, Park N-G (2018) Methodologies toward highly efficient perovskite solar cells. Small 4:1704177 (1–17).  https://doi.org/10.1002/smll.201704177 CrossRefGoogle Scholar
  79. Shao S, Liu J, Portale G, Fang H-H, Blake GR, Brink GH, Koster LJA, Loi MA (2017) Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv Energy Mater 8:1702019.  https://doi.org/10.1002/aenm.201702019 CrossRefGoogle Scholar
  80. Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4(21):3623–3630.  https://doi.org/10.1021/jz4020162 CrossRefGoogle Scholar
  81. Sobus J, Ziolek M (2014) Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values. Phys Chem Chem Phys 16:14116–14126.  https://doi.org/10.1039/C4CP01937G CrossRefGoogle Scholar
  82. Stephen M, Genevicius K, Juska G, Arlauskas K, Hiorns RC (2017) Charge transport and its characterization using photo-CELIV in bulk heterojunction solar cells. Polym Int 66:13–25.  https://doi.org/10.1002/pi.5274 CrossRefGoogle Scholar
  83. Susrutha B, Giribabu L, Singh SP (2015) Recent advances in flexible perovskite solar cells. Chem Commun 51:14696–14707.  https://doi.org/10.1039/C5CC03666F CrossRefGoogle Scholar
  84. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110(1):389–458.  https://doi.org/10.1021/cr900137k CrossRefGoogle Scholar
  85. Tetreault N, Gratzel M (2012) Novel nanostructures for next generation dye-sensitized solar cells. Energ Enviorn Sci 5:8506–8516.  https://doi.org/10.1039/C2EE03242B CrossRefGoogle Scholar
  86. Theerthagiri J, Senthil AR, Madhavan J, Maiyalagan T (2015) Recent progress in non-platinum counter electrode materials for dye-sensitized solar cells. ChemElectroChem 2:928–945.  https://doi.org/10.1002/celc.201402406 CrossRefGoogle Scholar
  87. Thomas JP, Zhao L, McGillivray D, Leung KT (2013) High-efficiency hybrid solar cells by nanostructural modification in PEDOT:PSS with co-solvent addition. J Mater Chem A 2:2383–2389.  https://doi.org/10.1039/C3TA14590E. CrossRefGoogle Scholar
  88. Wang L, Liu YS, Jiang X, Qin DH, Cao Y (2007) Enhancement of photovoltaic characteristics using a suitable solvent in hybrid polymer/multiarmed CdS nanorods solar cells. J Phys Chem C 111(26):9538–9542.  https://doi.org/10.1021/jp0715777 CrossRefGoogle Scholar
  89. Wang H, Luan C, Xu X, Kershaw SV, Rogach AL (2012) In situ versus ex situ assembly of aqueous-based thioacid capped CdSe nanocrystals within mesoporous TiO2 films for quantum dot sensitized solar cells. J Phys Chem C 116:484–489.  https://doi.org/10.1021/jp209987q CrossRefGoogle Scholar
  90. Wang R, Wu X, Xu K, Zhou W, Shang Y, Tang H, Chen H, Ning Z (2018) Highly efficient inverted structural quantum-dot solar cells. Adv Mater 30(7):1704882.  https://doi.org/10.1002/adma.201704882 CrossRefGoogle Scholar
  91. Wright M, Uddin A (2012) Organic-inorganic hybrid solar cells: a comparative review. Sol Energ Mater Sol Cells 107:87–111.  https://doi.org/10.1016/j.solmat.2012.07.006 CrossRefGoogle Scholar
  92. Wu K-L, Ho S-T, Chou C-C, Chang Y-C, Pan H-A, Chi Y, Chou P-T (2012) Engineering of osmium (II) based light absorbers for dye-sensitized solar cells. Angew Chem Int Ed 51(23):5642–5646.  https://doi.org/10.1002/anie.201200071 CrossRefGoogle Scholar
  93. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115(5):2136–2173.  https://doi.org/10.1021/cr400675m CrossRefGoogle Scholar
  94. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G, Lin Y, Xie Y, Wei Y (2017) Counter electrodes in dye-sensitized solar cells. Chem Soc Rev 46:5975–6023.  https://doi.org/10.1039/C6CS00752J CrossRefGoogle Scholar
  95. Xu T, Qiao Q (2011) Conjugated polymer–inorganic semiconductor hybrid solar cells. Energy Environ Sci 4:2700–2720.  https://doi.org/10.1039/C0EE00632G CrossRefGoogle Scholar
  96. Yang WS, Park B-W, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS (2017) Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345):1376–1379.  https://doi.org/10.1126/science.aan2301 CrossRefGoogle Scholar
  97. You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun 4:1–10.  https://doi.org/10.1038/ncomms2411. CrossRefGoogle Scholar
  98. Yuan J, Gallagher A, Liu Z, Sun Y, Ma W (2015) High-efficiency polymer-PbS hybrid solar cells via molecular engineering. J Mater Chem A 3:2572–2579.  https://doi.org/10.1039/C4TA03995E CrossRefGoogle Scholar
  99. Yun S, Hagfledt A, Ma T (2014) Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv Mater 26(36):6210–6237.  https://doi.org/10.1002/adma.201402056 CrossRefGoogle Scholar
  100. Yun S, Qin Y, Uhi AR, Vlachopoulos N, Yin M, Li D, Han X, Hagfeldt A (2018) New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ Sci 11:476–526.  https://doi.org/10.1039/C7EE03165C. CrossRefGoogle Scholar
  101. Zhang W, Zhang H, Feng Y, Zhong X (2012) Scalable single-step noninjection synthesis of high-quality core/shell quantum dots with emission tunable from violet to near infrared. ACS Nano 6(12):11066–11073CrossRefGoogle Scholar
  102. Zhao Y, Zhu K (2014) Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia. Chem Commun 50:1605–1607.  https://doi.org/10.1039/C3CC48522F CrossRefGoogle Scholar
  103. Zhao L, Wang J, Lin Z (2010) Semiconducting nanocrystals, conjugated polymers, and conjugated polymer/nanocrystal nanohybrids and their usage in solar cells. Front Chem China 5:33–44.  https://doi.org/10.1007/s11458-009-0112-x CrossRefGoogle Scholar
  104. Zhao K, Pan Z, Mora-Sero I, Canovas E, Wang H, Song Y, Gong X, Wang J, Bonn M, Bisquert J, Zhong X (2015) Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J Am Chem Soc 137:5602–5609.  https://doi.org/10.1021/jacs.5b01946 CrossRefGoogle Scholar
  105. Zhou Y, Eck M, Kruger M (2010) Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy Environ Sci 3:1851–1864.  https://doi.org/10.1039/C0EE00143K CrossRefGoogle Scholar
  106. Zhou R, Zheng Y, Qian L, Yang Y, Holloway PH, Xue J (2012) Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability. Nanoscale 4:3507–3514.  https://doi.org/10.1039/C2NR30210A CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Soosaimanickam Ananthakumar
    • 1
    • 2
    Email author
  • Jeyagopal Ram Kumar
    • 1
    • 3
  • Sridharan Moorthy Babu
    • 1
  1. 1.Crystal Growth CentreAnna UniversityChennaiIndia
  2. 2.Instituto de Ciencia de los Materiales (ICMUV)Universidad de ValenciaValenciaSpain
  3. 3.Department of Physics, Faculty of Physical and Mathematical SciencesUniversity of ConcepcionConcepcionChile

Personalised recommendations