Nanostructured Metal Oxides for Supercapacitor Applications

  • Katlego MakgopaEmail author
  • Abdulhakeem Bello
  • Kumar Raju
  • Kwena D. Modibane
  • Mpitloane J. Hato
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 23)


The fundamental properties of supercapacitors (SCs) with descriptions restricted to the metal oxides systems and the effect on the electrochemical performance and synthesis are described in this chapter. Metal oxides such as manganese oxide (MnO), vanadium oxide (V2O5) and ruthenium oxide (RuO) have demonstrated great potential in the field of energy storage due to their structural as well as electrochemical properties, thus attracting huge attention in the past decade and in recent years. The major contributing factor to the electrochemical properties is their capability to achieve relatively high pseudocapacitive performance derived from their theoretical values resulting from their multiple valence state changes. The developments of the metal oxide (MO)-based electrode materials and their composites are being explored from the synthetic point of view as well as their emerging applications as energy storage materials. Therefore, the need to further exploration of MO-based electrodes is motivated by their considerably low-cost and environmentally friendly nature as compared to other supercapacitive electrode materials. This chapter accounts to the overview of various nanostructured metal oxide materials for application as energy storage materials in supercapacitors.


Metal oxides Nanotechnology Supercapacitors Electrochemical behaviour Energy storage 


  1. An G, Yu P, Xiao M et al (2008) Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors. Nanotechnology 19:275709. CrossRefGoogle Scholar
  2. Arlinghaus FJ (1974) Energy bands in stannic oxide (SnO2). J Phys Chem Solids 35:931–935. CrossRefGoogle Scholar
  3. Augustyn V, Come J, Lowe MA et al (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522. CrossRefGoogle Scholar
  4. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597. CrossRefGoogle Scholar
  5. Bai MH, Bian LJ, Song Y, Liu XX (2014) Electrochemical codeposition of vanadium oxide and polypyrrole for high-performance supercapacitor with high working voltage. ACS Appl Mater Interfaces 6:12656–12664. CrossRefGoogle Scholar
  6. Bang H, Ellinger AE, Hadjimarcou J, Traichal PA (2000) Consumer concern, knowledge, belief, and attitude toward renewable energy: an application of the reasoned action theory. Psychol Mark 17:449–468CrossRefGoogle Scholar
  7. Bastakoti BP, Oveisi H, Hu C-C et al (2013) Mesoporous carbon incorporated with In2O3 nanoparticles as high-performance supercapacitors. Eur J Inorg Chem 2013:1109–1112. CrossRefGoogle Scholar
  8. Baykal A, Kavas H, Durmuş Z et al (2010) Sonochemical synthesis and chracterization of Mn3O4 nanoparticles. Cent Eur J Chem 8:633–638. CrossRefGoogle Scholar
  9. Béguin F, Raymundo-Piñero E, Frackowiak E (2009) Electrical double-layer capacitors and pseudocapacitors. CRC Press, Boca RatonCrossRefGoogle Scholar
  10. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251., 2283. CrossRefGoogle Scholar
  11. Bello A, Fashedemi OO, Fabiane M et al (2013a) Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor. Electrochim Acta 114:48. CrossRefGoogle Scholar
  12. Bello A, Fashedemi OO, Lekitima JN et al (2013b) High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide. AIP Adv 3:82118CrossRefGoogle Scholar
  13. Bonu V, Gupta B, Chandra S et al (2016) Electrochemical supercapacitor performance of SnO2 quantum dots. Electrochim Acta 203:230–237. CrossRefGoogle Scholar
  14. Borgohain R, Selegue JP, Cheng Y-T (2014) Ternary composites of delaminated-MnO2 /PDDA/functionalized-CNOs for high-capacity supercapacitor electrodes. J Mater Chem A 2:20367–20373. CrossRefGoogle Scholar
  15. Brousse T, Toupin M, Dugas R et al (2006) Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc 153:A2171. CrossRefGoogle Scholar
  16. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  17. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50. CrossRefGoogle Scholar
  18. Burke A, Liu Z, Zhao H (2014, December) Present and future applications of supercapacitors in electric and hybrid vehicles. Conference: IEEE International Electric Vehicle Conference 2014, Florence 17–19
  19. Bykova E, Dubrovinsky L, Dubrovinskaia N et al (2016) Structural complexity of simple Fe2O3 at high pressures and temperatures. Nat Commun 7:10661. CrossRefGoogle Scholar
  20. Cao L, Zhu J, Li Y et al (2014) Ultrathin single-crystalline vanadium pentoxide nanoribbon constructed 3D networks for superior energy storage. J Mater Chem A 2:13136–13142. CrossRefGoogle Scholar
  21. Chang J, Lee W, Mane RS et al (2008) Morphology-dependent electrochemical supercapacitor properties of indium oxide. Electrochem Solid-State Lett 11:A9. CrossRefGoogle Scholar
  22. Chen Z, Zhang S, TAn S et al (1997) Preparation and electron spin resonance effect of nanometer-sized Mn2O3. J Cryst Growth 180:280–283. CrossRefGoogle Scholar
  23. Chen X, Li X, Jiang Y et al (2005) Rational synthesis of MnO2 and Mn2O3 nanowires with the electrochemical characterization of MnO2 nanowires for supercapacitor. Solid State Commun 136:94–96. CrossRefGoogle Scholar
  24. Chen Z, Qin Y, Weng D et al (2009) Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv Funct Mater 19:3420–3426. CrossRefGoogle Scholar
  25. Chen JS, Archer LA, Wen (David) Lou X (2011a) SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem 21:9912. CrossRefGoogle Scholar
  26. Chen Z, Augustyn V, Wen J et al (2011b) High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv Mater 23:791–795. CrossRefGoogle Scholar
  27. Cheng H-W, Zhou C, Mai L et al (2008) Field emission from V2O5nH2O Nanorod arrays. J Phys Chem C 112:2262–2265. CrossRefGoogle Scholar
  28. Chiang NK, Clokec M, Chena GZ et al (2006) Nano-sized Mn2O3 preparedby a novel solvolysis route as an electrochemical capacitor. Inst Eng Malaysia 69:31–36Google Scholar
  29. Chidembo AT, Aboutalebi SH, Konstantinov K et al (2014) In situ engineering of urchin-like reduced graphene oxide–Mn2O3–Mn3O4 nanostructures for supercapacitors. RSC Adv 4:886–892. CrossRefGoogle Scholar
  30. Choi D, Blomgren GE, Kumta PN (2006) Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv Mater 18:1178–1182CrossRefGoogle Scholar
  31. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum, New YorkCrossRefGoogle Scholar
  32. Cottineau T, Toupin M, Delahaye T et al (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A Mater Sci Process 82:599–606CrossRefGoogle Scholar
  33. Deb SK (2008) Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol Energy Mater Sol Cells 92:245–258. CrossRefGoogle Scholar
  34. Deng L, Zhang G, Kang L et al (2013) Graphene/VO2 hybrid material for high performance electrochemical capacitor. Electrochim Acta 112:448–457. CrossRefGoogle Scholar
  35. Djurfors B, Broughton JN, Brett MJ, Ivey DG (2005) Electrochemical oxidation of Mn/MnO films: formation of an electrochemical capacitor. Acta Mater 53:957–965. CrossRefGoogle Scholar
  36. Dong R, Ye Q, Kuang L et al (2013) Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl Mater Interfaces 5:9508–9516CrossRefGoogle Scholar
  37. Drache M, Roussel P, Wignacourt J-P (2007) Structures and oxide mobility in Bi−Ln−O materials: heritage of Bi2O3. Chem Rev 107:80–96. CrossRefGoogle Scholar
  38. Du Y, Yan J, Meng Q et al (2012) Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure. Mater Chem Phys 133:907–912. CrossRefGoogle Scholar
  39. Dubal DP, Holze R (2013) A successive ionic layer adsorption and reaction (SILAR) method to induce Mn3O4 nanospots on CNTs for supercapacitors. New J Chem 37:403–408. CrossRefGoogle Scholar
  40. Dubal DP, Dhawale DS, Salunkhe RR et al (2009) A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application. J Alloys Compd 484:218–221. CrossRefGoogle Scholar
  41. Dubal DP, Dhawale DS, Salunkhe RR et al (2010) Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. J Alloys Compd 497:166–170. CrossRefGoogle Scholar
  42. Fan D, Yang P (1999) Introduction to and classification of manganese deposits of China. Ore Geol Rev 15:1–13CrossRefGoogle Scholar
  43. Gao W, Ye S, Shao M (2011) Solution-combusting preparation of mono-dispersed Mn3O4 nanoparticles for electrochemical applications. J Phys Chem Solids 72:1027–1031. CrossRefGoogle Scholar
  44. Ghosh A, Lee YH (2012) Carbon-based electrochemical capacitors. ChemSusChem 5:480–499. CrossRefGoogle Scholar
  45. Ghosh S, Gupta B, Ganesan K et al (2016) MnO2-vertical graphene nanosheets composite electrodes for energy storage devices. Mater Today Proc 3:1686–1692. CrossRefGoogle Scholar
  46. Ghosh S, Jeong SM, Polaki SR (2018) A review on metal nitrides/oxynitrides as an emerging supercapacitor electrode beyond oxide. Korean J Chem Eng 35:1389–1408. CrossRefGoogle Scholar
  47. Greenwood N (1997) Chemistry of the elements, 2nd edn. Heinemann, ButterworthGoogle Scholar
  48. Guan C, Liu J, Wang Y et al (2015) Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9:5198–5207. CrossRefGoogle Scholar
  49. Gujar TP, Shinde VR, Lokhande CD, Han S-H (2006) Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J Power Sources 161:1479–1485. CrossRefGoogle Scholar
  50. Gustafson KPJ, Shatskiy A, Verho O et al (2017) Water oxidation mediated by ruthenium oxide nanoparticles supported on siliceous mesocellular foam. Cat Sci Technol 7:293–299. CrossRefGoogle Scholar
  51. Hatzell KB, Fan L, Beidaghi M et al (2014) Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor. ACS Appl Mater Interfaces 6:8886–8893. CrossRefGoogle Scholar
  52. Hatzell KB, Boota M, Kumbur EC, Gogotsi Y (2015) Flowable conducting particle networks in redox-active electrolytes for grid energy storage. J Electrochem Soc 162:A5007–A5012. CrossRefGoogle Scholar
  53. He W, Zhang Y, Zhang X et al (2003) Low temperature preparation of nanocrystalline Mn2O3 via ethanol-thermal reduction of MnO2. J Cryst Growth 252:285–288. CrossRefGoogle Scholar
  54. Hou X, Liu B, Wang X et al (2013) SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale 5:7831. CrossRefGoogle Scholar
  55. Hsieh C-T, Lee W-Y, Lee C-E, Teng H (2014) Electrochemical capacitors fabricated with tin oxide/graphene oxide nanocomposites. J Phys Chem C 118:15146–15153. CrossRefGoogle Scholar
  56. Hu C, Tsou T (2002) Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem Commun 4:105–109CrossRefGoogle Scholar
  57. Hu C-C, Chang K-H, Lin M-C, Wu Y-T (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695CrossRefGoogle Scholar
  58. Huang Z, Chai C, Tan X et al (2007) Photoluminescence properties of the In2O3 octahedrons synthesized by carbothermal reduction method. Mater Lett 61:5137–5140. CrossRefGoogle Scholar
  59. Hui-Chi Chiu C-SY (2007) Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. J Phys Chem C 111:7256–7259. CrossRefGoogle Scholar
  60. Hwang JY, El-Kady MF, Wang Y et al (2015) Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 18:57–70. CrossRefGoogle Scholar
  61. IEA (2014) With projections to 2040. In: Int. Energy Outlook 2014Google Scholar
  62. Jafta CJ, Nkosi F, le Roux L et al (2013) Manganese oxide/graphene oxide composites for high-energy aqueous asymmetric electrochemical capacitors. Electrochim Acta 110:228–233. CrossRefGoogle Scholar
  63. Jiang J, Kucernak A (2002) Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochim Acta 47:2381–2386. CrossRefGoogle Scholar
  64. Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41–53CrossRefGoogle Scholar
  65. Jiang Q, Kurra N, Alhabeb M et al (2018) All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater 1703043:1703043. CrossRefGoogle Scholar
  66. Jo C, Hwang I, Lee J et al (2011) Investigation of pseudocapacitive charge-storage behavior in highly conductive ordered mesoporous tungsten oxide electrodes. J Phys Chem C 115:11880–11886. CrossRefGoogle Scholar
  67. Johan E. ten Elshof, Yuan H, Gonzalez Rodriguez P (2016) Two-dimensional metal oxide and metal hydroxide nanosheets: synthesis, controlled assembly and applications in energy conversion and storage. Adv Energy Mater 6:1600355. CrossRefGoogle Scholar
  68. Kawasaki BS, Garside BK, Shewchun J (1970) Electron beam luminescence of SnO2. Proc IEEE 58:179–180. CrossRefGoogle Scholar
  69. Kim M, Kim J (2017) Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodes as electrochemical supercapacitors. Nanotechnology 28:195401. CrossRefGoogle Scholar
  70. Kim Y-T, Mitani T (2006) Oxidation treatment of carbon nanotubes: an essential process in nanocomposite with RuO2 for supercapacitor electrode materials. Appl Phys Lett 89:033107. CrossRefGoogle Scholar
  71. Kim Y-H, Park S-J (2011) Roles of nanosized Fe3O4 on supercapacitive properties of carbon nanotubes. Curr Appl Phys 11:462–466. CrossRefGoogle Scholar
  72. Kim HW, Shim SH, Lee C (2006) SnO2 microparticles by thermal evaporation and their properties. Ceram Int 32:943–946. CrossRefGoogle Scholar
  73. Korotcenkov G, Brinzari V, Cerneavschi A et al (2002) Crystallographic characterization of In2O3 films deposited by spray pyrolysis. Sensors Actuators B Chem 84:37–42. CrossRefGoogle Scholar
  74. Lee HY, Goodenough JBJB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144:220–223. CrossRefGoogle Scholar
  75. Lee JW, Hall AS, Kim J-D, Mallouk TE (2012) A facile and template-free hydrothermal synthesis of Mn3O4 Nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24:1158–1164. CrossRefGoogle Scholar
  76. Li M, He H (2018) Nickel-foam-supported ruthenium oxide/graphene sandwich composite constructed via one-step electrodeposition route for high-performance aqueous supercapacitors. Appl Surf Sci 439:612–622. CrossRefGoogle Scholar
  77. Li Y, Yao J, Uchaker E et al (2013) Leaf-like V2O5 Nanosheets fabricated by a facile green approach as high energy cathode material for Lithium-ion batteries. Adv Energy Mater 3:1171–1175. CrossRefGoogle Scholar
  78. Li W, Shao J, Liu Q et al (2015) Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors. Electrochim Acta 157:108–114. CrossRefGoogle Scholar
  79. Li Q, Zheng S, Xu Y et al (2018) Ruthenium based materials as electrode materials for supercapacitors. Chem Eng J 333:505–518. CrossRefGoogle Scholar
  80. Liu F-A, Yang Y-C, Liu J et al (2012) Preparation of Bi2O3@Bi2S3 core–shell nanoparticle assembled thin films and their photoelectrochemical and photoresponsive properties. J Electroanal Chem 665:58–62. CrossRefGoogle Scholar
  81. Liu Y, Jiao Y, Zhang Z et al (2014) Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl Mater Interfaces 6:2174–2184. CrossRefGoogle Scholar
  82. Liu J, Huang S, He L (2015a) Metal-catalyzed growth of In2O3 nanotowers using thermal evaporation and oxidation method. J Semicond 36:123007. CrossRefGoogle Scholar
  83. Liu T, Zhao Y, Gao L, Ni J (2015b) Engineering Bi2O3-Bi2S3 heterostructure for superior lithium storage. Sci Rep 5:9307. CrossRefGoogle Scholar
  84. Liu Y, Wei J, Tian Y, Yan S (2015c) The structure–property relationship of manganese oxides: highly efficient removal of methyl orange from aqueous solution. J Mater Chem A 3:19000–19010. CrossRefGoogle Scholar
  85. Luo J, Liu J, Zeng Z et al (2013) Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett 13:6136–6143. CrossRefGoogle Scholar
  86. Ma S-B, Nam K-W, Yoon W-S et al (2008) Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J Power Sources 178:483–489. CrossRefGoogle Scholar
  87. Makgopa K, Ejikeme PM, Jafta CJ et al (2015) A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. J Mater Chem A 3:3480–3490CrossRefGoogle Scholar
  88. Makgopa K, Ejikeme PM, Ozoemena KI (2016) Nanostructured manganese oxides in supercapacitors. In: KOzoemena KI, Chen S (eds) Nanomaterials in advanced batteries and supercapacitors. Springer, New York, pp 345–376CrossRefGoogle Scholar
  89. Makgopa K, Raju K, Ejikeme PM, Ozoemena KI (2017) High-performance Mn3O4/onion-like carbon (OLC) nanohybrid pseudocapacitor: unravelling the intrinsic properties of OLC against other carbon supports. Carbon 117:20–32. CrossRefGoogle Scholar
  90. Manikandan K, Dhanuskodi S, Maheswari N, Muralidharan G (2016) SnO2 nanoparticles for supercapacitor application. In: AIP conference proceedings. AIP Publishing LLC, p 050048Google Scholar
  91. Meher SK, Rao GR (2012) Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications. J Power Sources 215:317–328. CrossRefGoogle Scholar
  92. Meng W, Chen W, Zhao L et al (2014) Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy 8:133–140. CrossRefGoogle Scholar
  93. Miller JM (1997) Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J Electrochem Soc 144:L309. CrossRefGoogle Scholar
  94. Miller JRJ, Burke AFA (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc Interface 17:53Google Scholar
  95. Min J, Kierzek K, Chen X et al (2017) Facile synthesis of porous iron oxide/graphene hybrid nanocomposites and potential application in electrochemical energy storage. New J Chem 41:13553–13559. CrossRefGoogle Scholar
  96. Ming B, Li J, Kang F et al (2012) Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. J Power Sources 198:428–431. CrossRefGoogle Scholar
  97. Mitchell E, Gupta RK, Mensah-Darkwa K et al (2014) Facile synthesis and morphogenesis of superparamagnetic iron oxide nanoparticles for high-performance supercapacitor applications. New J Chem 38:4344–4350. CrossRefGoogle Scholar
  98. Nagarajan N, Humadi H, Zhitomirsky I (2006) Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochim Acta 51:3039–3045. CrossRefGoogle Scholar
  99. Nam HS, Kwon JS, Kim KM et al (2010) Supercapacitive properties of a nanowire-structured MnO2 electrode in the gel electrolyte containing silica. Electrochim Acta 55:7443–7446. CrossRefGoogle Scholar
  100. Nathan T, Cloke M, Prabaharan SRS (2008) Electrode properties of Mn2O3 nanospheres synthesized by combined sonochemical/solvothermal method for use in electrochemical capacitors. J Nanomater 1:
  101. Ng CH, Lim HN, Hayase S et al (2018) Effects of temperature on electrochemical properties of bismuth oxide/manganese oxide pseudocapacitor. Ind Eng Chem Res 57:2146–2154. CrossRefGoogle Scholar
  102. Ni J, Lu W, Zhang L et al (2009) Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. J Phys Chem 113:54–60. CrossRefGoogle Scholar
  103. Osiak M, Khunsin W, Armstrong E et al (2013) Epitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anode. Nanotechnology 24:065401. CrossRefGoogle Scholar
  104. Ozkaya T, Toprak MS, Baykal A et al (2009) Synthesis of Fe3O4 nanoparticles at 100°C and its magnetic characterization. J Alloys Compd 472:18–23. CrossRefGoogle Scholar
  105. Padmanathan N, Shao H, McNulty D et al (2016) Hierarchical NiO–In2O3 microflower (3D)/nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability. J Mater Chem A 4:4820–4830. CrossRefGoogle Scholar
  106. Park J, Lee JW, Ye BU et al (2015) Structural evolution of chemically-driven RuO2/ nanowires and 3-dimensional design for photo-catalytic applications. Sci Rep 5:1–10. CrossRefGoogle Scholar
  107. Pham DP, Phan BT, Hoang VD et al (2014) Control of preferred (222) crystalline orientation of sputtered indium tin oxide thin films. Thin Solid Films 570:16–19. CrossRefGoogle Scholar
  108. Poizot P, Dolhem F (2011) Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci 4:2003. CrossRefGoogle Scholar
  109. Potter R, Rossman G (1979) The tetravalent manganese oxides: identification , hydration , and structural relationships by infrared spectroscopy. Am Mineral 64:1199–1218Google Scholar
  110. Prasad KR, Koga K, Miura N (2004) Electrochemical deposition of nanostructured indium oxide: high-performance electrode material for redox supercapacitors. Chem Mater 16:1845–1847. CrossRefGoogle Scholar
  111. Pusawale SN, Deshmukh PR, Gunjakar JL, Lokhande CD (2013) SnO2–RuO2 composite films by chemical deposition for supercapacitor application. Mater Chem Phys 139:416–422. CrossRefGoogle Scholar
  112. Qiao Y, Sun Q, Cui H et al (2015) Synthesis of micro/nano-structured Mn3O4 for supercapacitor electrode with excellent rate performance. RSC Adv.
  113. Qiu M, Sun P, Shen L et al (2016) WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. J Mater Chem A 4:7266–7273. CrossRefGoogle Scholar
  114. Qu Q, Yang S, Feng X (2011) 2D Sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv Mater 23:5574–5580. CrossRefGoogle Scholar
  115. Qu Q, Zhu Y, Gao X, Wu Y (2012) Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv Energy Mater 2:950–955. CrossRefGoogle Scholar
  116. Ragupathy P, Park DH, Campet G et al (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309. CrossRefGoogle Scholar
  117. Rakhi RB, Nagaraju DH, Beaujuge P, Alshareef HN (2016) Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte. Electrochim Acta 220:601–608. CrossRefGoogle Scholar
  118. Sankar KV, Senthilkumar ST, Berchmans LJ et al (2012) Effect of reaction time on the synthesis and electrochemical properties of Mn3O4 nanoparticles by microwave assisted reflux method. Appl Surf Sci 259:624–630. CrossRefGoogle Scholar
  119. Saravanakumar B, Purushothaman KK, Muralidharan G (2012) Interconnected V2O5 Nanoporous network for high-performance supercapacitors. ACS Appl Mater Interfaces 4:4484–4490. CrossRefGoogle Scholar
  120. Saravanakumar B, Purushothaman KK, Muralidharan G (2016) Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors. Mater Chem Phys 170:266–275. CrossRefGoogle Scholar
  121. Senthilkumar ST, Selvan RK, Ulaganathan M, Melo JS (2014) Fabrication of Bi2O3||AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances. Electrochim Acta 115:518–524. CrossRefGoogle Scholar
  122. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7:1250–1280. CrossRefGoogle Scholar
  123. Sharma RK, Oh H-S, Shul Y-G, Kim H (2007) Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor. J Power Sources 173:1024–1028. CrossRefGoogle Scholar
  124. Shown I, Ganguly A, Chen L-C, Chen K-H (2015) Conducting polymer-based flexible supercapacitor. Energy Sci Eng 3:2–26. CrossRefGoogle Scholar
  125. Spence W (1967) The uv absorption edge of tin oxide thin films. J Appl Phys 38:3767–3770. CrossRefGoogle Scholar
  126. Subramanian V, Zhu H, Vajtai R et al (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109:20207–20214CrossRefGoogle Scholar
  127. Subramanian V, Zhu H, Wei B (2006) Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem Commun 8:827–832. CrossRefGoogle Scholar
  128. Sudha V, Sangaranarayanan MV (2002) Underpotential deposition of metals: structural and thermodynamic considerations. J Phys Chem B 106:2699–2707. CrossRefGoogle Scholar
  129. Tan Y, Meng L, Peng Q, Li Y (2011) One-dimensional single-crystalline Mn3O4 nanostructures with tunable length and magnetic properties of Mn3O4 nanowires. Chem Commun (Camb) 47:1172–1174. CrossRefGoogle Scholar
  130. Tang Y, Wu D, Chen S et al (2013) Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets. Energy Environ Sci 6:2447. CrossRefGoogle Scholar
  131. Tang Q, Wang W, Wang G (2015) The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors. J Mater Chem A 3:6662–6670. CrossRefGoogle Scholar
  132. Tang K, Li Y, Li Y et al (2016) Self-reduced VO/VOx/carbon nanofiber composite as binder-free electrode for supercapacitors. Electrochim Acta 209:709–718. CrossRefGoogle Scholar
  133. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854. CrossRefGoogle Scholar
  134. Thomas L, Floyd DB (2009) Electronics fundamentals: circuits, devices & applications, 6th edn. Prentice Hall Press, Upper Saddle RiverGoogle Scholar
  135. Tien L-C, Chen Y-J (2013) Influence of growth ambient on the surface and structural properties of vanadium oxide nanorods. Appl Surf Sci 274:64–70. CrossRefGoogle Scholar
  136. Toupin M, Brousse T, Be D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190CrossRefGoogle Scholar
  137. Tuzluca FN, Yesilbag YO, Akkus T, Ertugrul M (2017) Effects of graphite on the synthesis of 1-D single crystal In2O3 nanostructures at high temperature. Mater Sci Semicond Process 66:62–68. CrossRefGoogle Scholar
  138. Tuzluca FN, Yesilbag YO, Ertugrul M (2018) Synthesis of In2O3 nanostructures with different morphologies as potential supercapacitor electrode materials. Appl Surf Sci 427:956–964. CrossRefGoogle Scholar
  139. UNEP (2013) Green economy and trade – trends, challenges and opportunities. In: United Nations Environmental ProgramGoogle Scholar
  140. Upadhyay KK, Altomare M, Eugénio S et al (2017) On the supercapacitive behaviour of anodic porous WO3-based negative electrodes. Electrochim Acta 232:192–201. CrossRefGoogle Scholar
  141. Velmurugan V, Srinivasarao U, Ramachandran R et al (2016) Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications. Mater Res Bull 84:145–151. CrossRefGoogle Scholar
  142. Vijayabala V, Senthilkumar N, Nehru K, Karvembu R (2018) Hydrothermal synthesis and characterization of ruthenium oxide nanosheets using polymer additive for supercapacitor applications. J Mater Sci Mater Electron 29:323–330. CrossRefGoogle Scholar
  143. Vol’fkovich YM, Serdyuk TM, Vol YM (2002) Electrochemical capacitors. Russ J Electrochem 38:935–959CrossRefGoogle Scholar
  144. Wang X, Wang X, Huang W et al (2005) Sol-gel template synthesis of highly ordered MnO2 nanowire arrays. J Power Sources 140:211–215. CrossRefGoogle Scholar
  145. Wang S-Y, Ho K-C, Kuo S-L, Wu N-L (2006) Investigation on capacitance mechanisms of Fe3O4 electrochemical capacitors. J Electrochem Soc 153:A75. CrossRefGoogle Scholar
  146. Wang X, Yuan A, Wang Y (2007) Supercapacitive behaviors and their temperature dependence of sol-gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte. J Power Sources 172:1007–1011. CrossRefGoogle Scholar
  147. Wang L, Yu Y, Chen PC et al (2008) Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J Power Sources 183:717–723. CrossRefGoogle Scholar
  148. Wang B, Park J, Wang C et al (2010) Mn3O4 nanoparticles embedded into graphene nanosheets: preparation, characterization, and electrochemical properties for supercapacitors. Electrochim Acta 55:6812–6817CrossRefGoogle Scholar
  149. Wang X, Liu L, Wang X et al (2011) Mn2O3/carbon aerogel microbead composites synthesized by in situ coating method for supercapacitors. Mater Sci Eng B Solid-State Mater Adv Technol 176:1232–1238. CrossRefGoogle Scholar
  150. Wang D, Li Y, Wang Q, Wang T (2012) Facile synthesis of porous Mn3O4 nanocrystal-graphene nanocomposites for electrochemical supercapacitors. Eur J Inorg Chem:628–635.
  151. Wang Y, Yu SF, Sun CY et al (2012c) MnO2/onion-like carbon nanocomposites for pseudocapacitors. J Mater Chem 22:17584–17588. CrossRefGoogle Scholar
  152. Wang HY, Xiao FX, Yu L et al (2014) Hierarchical α-MnO2 nanowires@Ni1-xMnxOy nanoflakes core-shell nanostructures for supercapacitors. Small 10:3181–3186. CrossRefGoogle Scholar
  153. Wang N, Zhang Y, Hu T et al (2015) Facile hydrothermal synthesis of ultrahigh-aspect-ratio V2O5 nanowires for high-performance supercapacitors. Curr Appl Phys 15:493–498. CrossRefGoogle Scholar
  154. Wang P, Liu H, Xu Y et al (2016a) Supported ultrafine ruthenium oxides with specific capacitance up to 1099 F g-1for a supercapacitor. Electrochim Acta 194:211–218. CrossRefGoogle Scholar
  155. Wang Y-C, Chen C-Y, Kuo C-W et al (2016b) Low-temperature grown indium oxide nanowire-based antireflection coatings for multi-crystalline silicon solar cells. Phys Status Solidi 213:2259–2263. CrossRefGoogle Scholar
  156. Wee G, Soh HZ, Cheah YL et al (2010) Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J Mater Chem 20:6720. CrossRefGoogle Scholar
  157. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721. CrossRefGoogle Scholar
  158. Wei D, Scherer MRJ, Bower C et al (2012) A nanostructured electrochromic supercapacitor. Nano Lett 12:1857–1862. CrossRefGoogle Scholar
  159. Wells AF (1984) Structural inorganic chemistry, 5th edn. Science Publications, OxfordGoogle Scholar
  160. Wu Y-T, Hu C-C (2005) Aspect ratio controlled growth of MnOOH in mixtures of Mn3O4 and MnOOH single crystals for supercapacitors. Electrochem Solid-State Lett 8:A240–A244CrossRefGoogle Scholar
  161. Wu X, Yao S (2017) Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices. Nano Energy 42:143–150. CrossRefGoogle Scholar
  162. Wu N-L, Wang S-Y, Han C-Y et al (2003) Electrochemical capacitor of magnetite in aqueous electrolytes. J Power Sources 113:173–178. CrossRefGoogle Scholar
  163. Wu Z-S, Ren W, Wang D et al (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842. CrossRefGoogle Scholar
  164. Wu J, Huang H, Yu L, Hu J (2013) Controllable hydrothermal synthesis of MnO2 nanostructures. Adv Mater Phys Chem 3:201–205CrossRefGoogle Scholar
  165. Xia H, Shirley Meng Y, Yuan G et al (2012) A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. Electrochem Solid-State Lett 15:A60–A63. CrossRefGoogle Scholar
  166. Xiao W, Xia H, Fuh JYH, Lu L (2009) Growth of single-crystal-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J Power Sources 193:935–938. CrossRefGoogle Scholar
  167. Xiong C, Aliev AE, Gnade B, Balkus KJ (2008) Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics. ACS Nano 2:293–301. CrossRefGoogle Scholar
  168. Xu HY, Le XS, Li XD et al (2006) Chemical bath deposition of hausmannite Mn3O4 thin films. Appl Surf Sci 252:4091–4096. CrossRefGoogle Scholar
  169. Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147CrossRefGoogle Scholar
  170. Xu L, Ding Y, Chen C, Zhao L (2008) 3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chem Mater 20:308–316. CrossRefGoogle Scholar
  171. Yan D, Cheng S, Zhuo RF et al (2009) Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology 20:105706–105717. CrossRefGoogle Scholar
  172. Yan J, Khoo E, Sumboja A, Lee PS (2010) Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 4:4247–4255. CrossRefGoogle Scholar
  173. Yan Y, Li B, Guo W et al (2016) Vanadium based materials as electrode materials for high performance supercapacitors. J Power Sources 329:148–169. CrossRefGoogle Scholar
  174. Yang J, Li X, Bai SL et al (2011a) Electrodeposition and electrocatalytic characteristics of porous crystalline SnO2 thin film using butyl-rhodamine B as a structure-directing agent. Thin Solid Films 519:6241–6245. CrossRefGoogle Scholar
  175. Yang Y, Kim D, Yang M, Schmuki P (2011b) Vertically aligned mixed V2O5–TiO2 nanotube arrays for supercapacitor applications. Chem Commun 47:7746. CrossRefGoogle Scholar
  176. Yang J, Lan T, Liu J et al (2013) Supercapacitor electrode of hollow spherical V2O5 with a high pseudocapacitance in aqueous solution. Electrochim Acta 105:489–495. CrossRefGoogle Scholar
  177. Yang P, Ding Y, Lin Z et al (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731–736. CrossRefGoogle Scholar
  178. Yang F, Zhao M, Sun Q, Qiao Y (2015) A novel hydrothermal synthesis and characterisation of porous Mn3O4 for supercapacitors with high rate capability. RSC Adv 5:9843–9847. CrossRefGoogle Scholar
  179. Yıldırım MA, Akaltun Y, Ateş A (2012) Characteristics of SnO2 thin films prepared by SILAR. Solid State Sci 14:1282–1288. CrossRefGoogle Scholar
  180. Yin AX, Liu WC, Ke J et al (2012) Ru nanocrystals with shape-dependent surface-enhanced raman spectra and catalytic properties: controlled synthesis and DFT calculations. J Am Chem Soc 134:20479–20489. CrossRefGoogle Scholar
  181. Yin B, Zhang S, Yang J et al (2014) Facile synthesis of ultralong MnO2 nanowires as high performance supercapacitor electrodes and photocatalysts with enhanced photocatalytic activities. CrystEngComm 16:9999–10005. CrossRefGoogle Scholar
  182. Yu C, Zhang L, Shi J et al (2008) A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore size distribution, and their electrochemical properties. Adv Funct Mater 18:1544–1554. CrossRefGoogle Scholar
  183. Yu D, Chen C, Xie S et al (2011) Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ Sci 4:858–861. CrossRefGoogle Scholar
  184. Yu M, Liu X, Wang Y et al (2012) Gas sensing properties of p-type semiconducting vanadium oxide nanotubes. Appl Surf Sci 258:9554–9558. CrossRefGoogle Scholar
  185. Yu A, Chabot V, Zhang J (2013a) Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. CRC PressGoogle Scholar
  186. Yu Z, Duong B, Abbitt D, Thomas J (2013b) Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv Mater 25:3302–3306. CrossRefGoogle Scholar
  187. Yu M, Zeng Y, Han Y et al (2015) Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super-long cyclic durability of 100 000 cycles. Adv Funct Mater 25:3534–3540. CrossRefGoogle Scholar
  188. Yuan L, Xiao X, Ding T et al (2012) Paper-based supercapacitors for self-powered nanosystems. Angew Chem Int Ed 51:4934–4938. CrossRefGoogle Scholar
  189. Zhang LL, Wei T, Wang W, Zhao XS (2009) Manganese oxide – carbon composite as supercapacitor electrode materials. Microporous Mesoporous Mater 123:260–267CrossRefGoogle Scholar
  190. Zhang Z, Zou R, Song G et al (2011) Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J Mater Chem 21:17360. CrossRefGoogle Scholar
  191. Zhang X, Cheng X, Zhang Q (2016a) Nanostructured energy materials for electrochemical energy conversion and storage: a review. J Energy Chem 25:967–984. CrossRefGoogle Scholar
  192. Zhang Y, Zheng J, Zhao Y et al (2016b) Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor. Appl Surf Sci 377:385–393. CrossRefGoogle Scholar
  193. Zhao X, Johnston C, Grant PS (2009) A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode. J Mater Chem 19:8755. CrossRefGoogle Scholar
  194. Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142:2699–2703CrossRefGoogle Scholar
  195. Zheng F-L, Li G-R, Ou Y-N et al (2010) Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chem Commun 46:5021. CrossRefGoogle Scholar
  196. Zheng H, Ou JZ, Strano MS et al (2011) Nanostructured tungsten oxide – properties, synthesis, and applications. Adv Funct Mater 21:2175–2196. CrossRefGoogle Scholar
  197. Zheng ZQ, Zhu LF, Wang B (2015) In2O3 nanotower hydrogen gas sensors based on both schottky junction and thermoelectronic emission. Nanoscale Res Lett 10:293. CrossRefGoogle Scholar
  198. Zheng W, Zhang P, Tian W et al (2017) Microwave-assisted synthesis of SnO2-Ti3C2 nanocomposite for enhanced supercapacitive performance. Mater Lett 209:122–125. CrossRefGoogle Scholar
  199. Zhong C, Deng Y, Hu W et al (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539. CrossRefGoogle Scholar
  200. Zhou T, Mo S, Zhou S et al (2011) Mn3O4/worm-like mesoporous carbon synthesized via a microwave method for supercapacitors. J Mater Sci 46:3337–3342. CrossRefGoogle Scholar
  201. Zhou G, Wang D-W, Hou P-X et al (2012) A nanosized Fe2O3 decorated single-walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries. J Mater Chem 22:17942. CrossRefGoogle Scholar
  202. Zhu J, Cao L, Wu Y et al (2013) Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Lett 13:5408–5413. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Katlego Makgopa
    • 1
    Email author
  • Abdulhakeem Bello
    • 2
  • Kumar Raju
    • 3
  • Kwena D. Modibane
    • 4
  • Mpitloane J. Hato
    • 4
  1. 1.Department of Chemistry, Faculty of ScienceTshwane University of Technology (Acardia Campus)PretoriaSouth Africa
  2. 2.Department of Materials Science and EngineeringAfrican University of Science and Technology (AUST)AbujaNigeria
  3. 3.Energy MaterialsCSIR Materials Science and ManufacturingPretoriaSouth Africa
  4. 4.Department of Chemistry, School of Physical and Mineral SciencesUniversity of Limpopo (Turfloop)PolokwaneSouth Africa

Personalised recommendations