Advertisement

Metal Oxide Additives Incorporated Hydrogen Storage Systems: Formation of In Situ Catalysts and Mechanistic Understanding

  • D. PukazhselvanEmail author
  • Narendar Nasani
  • S. K. Singh
  • Duncan Paul Fagg
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 23)

Abstract

Hydrogen storage is a critical bottleneck to hydrogen economy. Presently none of the solid-state hydrogen storage materials (metal hydrides) reaches the capacity vs performance target (6.5 wt.% at 85 °C/5-12 bar, 1500 cycles) for the commercialization of light duty H2 fuel cell vehicles. A few reversible hydrogen storage materials (e.g. MgH2, LiBH4/MgH2 composite) possess adequate capacity, but their performance needs to be improved significantly. Metal oxide additives improve the hydrogen storage performance of metal hydrides, but the additive-hydride reaction mechanism remains not well understood. In this context, the present chapter discusses how various metal oxide additives interact with metal hydrides and facilitate the low temperature de/ab-sorption of hydrogen. The metal oxide additives may either directly catalyze the reaction without making any chemical changes or they catalyze indirectly by making active in situ products. In this chapter, various oxides and hydride combinations of the latter category are analyzed, and factors governing the improved hydrogen ab-/desorption performance are highlighted.

Keywords

Nanomaterials Metal hydrides Hydrogen storage Reaction kinetics Metal oxides Nanocatalysis Additives Catalysts X-ray diffraction Crystal structure 

References

  1. Aguey-Zinsou KF, Ares Fernandez JR, Klassen T, Bormann R (2007) Effect of Nb2O5 on MgH2 properties during mechanical milling. Int J Hydrog Energy 32:2400–2407.  https://doi.org/10.1016/j.ijhydene.2006.10.068 CrossRefGoogle Scholar
  2. Anton DL, Price CJ, Gray J (2011) Affects of mechanical milling and metal oxide additives on sorption kinetics of 1:1 LiNH2/MgH2 mixture. Energies 4:826CrossRefGoogle Scholar
  3. Barkhordarian G, Klassen T, Bormann R (2003) Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scr Mater 49:213–217.  https://doi.org/10.1016/S1359-6462(03)00259-8 CrossRefGoogle Scholar
  4. Bluhm ME, Bradley MG, Butterick R, Kusari U, Sneddon LG (2006) Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 128:7748–7749.  https://doi.org/10.1021/ja062085v CrossRefGoogle Scholar
  5. Bogdanović B, Sandrock G (2011) Catalyzed complex metal hydrides. MRS Bull 27:712–716.  https://doi.org/10.1557/mrs2002.227 CrossRefGoogle Scholar
  6. Bogdanović B et al (2003) Investigation of hydrogen discharging and recharging processes of Ti-doped NaAlH4 by X-ray diffraction analysis (XRD) and solid-state NMR spectroscopy. J Alloys Compd 350:246–255.  https://doi.org/10.1016/S0925-8388(02)00953-2 CrossRefGoogle Scholar
  7. Bogdanović B, Eberle U, Felderhoff M, Schüth F (2007) Complex aluminum hydrides. Scr Mater 56:813–816.  https://doi.org/10.1016/j.scriptamat.2007.01.004 CrossRefGoogle Scholar
  8. Borgschulte A, Bielmann M, Züttel A, Barkhordarian G, Dornheim M, Bormann R (2008) Hydrogen dissociation on oxide covered MgH2 by catalytically active vacancies. Appl Surf Sci 254:2377–2384.  https://doi.org/10.1016/j.apsusc.2007.09.069 CrossRefGoogle Scholar
  9. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946.  https://doi.org/10.1002/anie.200702505 CrossRefGoogle Scholar
  10. Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications. Imperial College Press, LondonCrossRefGoogle Scholar
  11. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959.  https://doi.org/10.1021/cr0500535 CrossRefGoogle Scholar
  12. Chen P, Xiong Z, Luo J, Lin J, Tan KL (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420:302.  https://doi.org/10.1038/nature01210 https://www.nature.com/articles/nature01210#supplementary-information CrossRefGoogle Scholar
  13. Cho ES, Ruminski AM, Aloni S, Liu Y-S, Guo J, Urban JJ (2016) Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage. Nat Commun 7:10804.  https://doi.org/10.1038/ncomms10804 https://www.nature.com/articles/ncomms10804#supplementary-information CrossRefGoogle Scholar
  14. Croston DL, Grant DM, Walker GS (2010) The catalytic effect of titanium oxide based additives on the dehydrogenation and hydrogenation of milled MgH2. J Alloys Compd 492:251–258.  https://doi.org/10.1016/j.jallcom.2009.10.199 CrossRefGoogle Scholar
  15. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346.  https://doi.org/10.1021/cr030698+ CrossRefGoogle Scholar
  16. David WIF, Jones MO, Gregory DH, Jewell CM, Johnson SR, Walton A, Edwards PP (2007) A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. J Am Chem Soc 129:1594–1601.  https://doi.org/10.1021/ja066016s CrossRefGoogle Scholar
  17. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217.  https://doi.org/10.1039/B514191E CrossRefGoogle Scholar
  18. Fan M-Q, Sun L-X, Zhang Y, Xu F, Zhang J, H-l C (2008) The catalytic effect of additive Nb2O5 on the reversible hydrogen storage performances of LiBH4–MgH2 composite. Int J Hydrog Energy 33:74–80.  https://doi.org/10.1016/j.ijhydene.2007.09.012 CrossRefGoogle Scholar
  19. Felderhoff M et al (2004) Combined TEM-EDX and XAFS studies of Ti-doped sodium alanate. Phys Chem Chem Phys 6:4369–4374.  https://doi.org/10.1039/B403657N CrossRefGoogle Scholar
  20. Fichtner M, Fuhr O, Kircher O, Rothe J (2003) Small Ti clusters for catalysis of hydrogen exchange in NaAlH4. Nanotechnology 14:778CrossRefGoogle Scholar
  21. Friedrichs O, Klassen T, Sánchez-López JC, Bormann R, Fernández A (2006a) Hydrogen sorption improvement of nanocrystalline MgH2 by Nb2O5 nanoparticles. Scr Mater 54:1293–1297.  https://doi.org/10.1016/j.scriptamat.2005.12.011 CrossRefGoogle Scholar
  22. Friedrichs O, Sánchez-López JC, López-Cartes C, Dornheim M, Klassen T, Bormann R, Fernández A (2006b) Chemical and microstructural study of the oxygen passivation behaviour of nanocrystalline Mg and MgH2. Appl Surf Sci 252:2334–2345.  https://doi.org/10.1016/j.apsusc.2005.04.018 CrossRefGoogle Scholar
  23. Friedrichs O et al (2006c) MgH2 with Nb2O5 as additive, for hydrogen storage: chemical, structural and kinetic behavior with heating. Acta Mater 54:105–110.  https://doi.org/10.1016/j.actamat.2005.08.024 CrossRefGoogle Scholar
  24. Friedrichs O, Martínez-Martínez D, Guilera G, Sánchez López JC, Fernández A (2007) In situ energy-dispersive XAS and XRD study of the superior hydrogen storage system MgH2/Nb2O5. J Phys Chem C 111:10700–10706.  https://doi.org/10.1021/jp0675835 CrossRefGoogle Scholar
  25. Gawande MB, Pandey RK, Jayaram RV (2012) Role of mixed metal oxides in catalysis science-versatile applications in organic synthesis. Cat Sci Technol 2:1113–1125.  https://doi.org/10.1039/C2CY00490A CrossRefGoogle Scholar
  26. Hanada N, Ichikawa T, Fujii H (2005) Catalytic effect of Ni nano-particle and Nb oxide on H-desorption properties in MgH2 prepared by ball milling. J Alloys Compd 404–406:716–719.  https://doi.org/10.1016/j.jallcom.2004.12.166 CrossRefGoogle Scholar
  27. Hanada N et al (2009) X-ray absorption spectroscopic study on valence state and local atomic structure of transition metal oxides doped in MgH2. J Phys Chem C 113:13450–13455.  https://doi.org/10.1021/jp901859f CrossRefGoogle Scholar
  28. Handelman A, Beker P, Amdursky N, Rosenman G (2012) Physics and engineering of peptide supramolecular nanostructures. Phys Chem Chem Phys 14:6391–6408.  https://doi.org/10.1039/c2cp40157f CrossRefGoogle Scholar
  29. Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. Cattech 6:102–115CrossRefGoogle Scholar
  30. Henrich VE, Cox PA (1996) The surface science of metal oxides. Cambridge university press, CambridgeGoogle Scholar
  31. Huang ZG, Guo ZP, Calka A, Wexler D, Lukey C, Liu HK (2006) Effects of iron oxide (Fe2O3, Fe3O4) on hydrogen storage properties of Mg-based composites. J Alloys Compd 422:299–304.  https://doi.org/10.1016/j.jallcom.2005.11.074 CrossRefGoogle Scholar
  32. Ichikawa T, Isobe S, Hanada N, Fujii H (2004) Lithium nitride for reversible hydrogen storage. J Alloys Compd 365:271–276.  https://doi.org/10.1016/S0925-8388(03)00637-6 CrossRefGoogle Scholar
  33. Janot R, Eymery J-B, Tarascon J-M (2007) Investigation of the processes for reversible hydrogen storage in the Li–Mg–N–H system. J Power Sources 164:496–502.  https://doi.org/10.1016/j.jpowsour.2006.11.046 CrossRefGoogle Scholar
  34. Jeon K-J, Moon HR, Ruminski AM, Jiang B, Kisielowski C, Bardhan R, Urban JJ (2011) Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat Mater 10:286.  https://doi.org/10.1038/nmat2978 https://www.nature.com/articles/nmat2978#supplementary-information CrossRefGoogle Scholar
  35. Johnson OW (1964) One-dimensional diffusion of Li in rutile. Phys Rev 136:A284–A290CrossRefGoogle Scholar
  36. Jung KS, Lee EY, Lee KS (2006) Catalytic effects of metal oxide on hydrogen absorption of magnesium metal hydride. J Alloys Compd 421:179–184.  https://doi.org/10.1016/j.jallcom.2005.09.085 CrossRefGoogle Scholar
  37. Kalidindi SB, Jagirdar BR (2009) Highly monodisperse colloidal magnesium nanoparticles by room temperature digestive ripening. Inorg Chem 48:4524–4529.  https://doi.org/10.1021/ic9003577 CrossRefGoogle Scholar
  38. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677.  https://doi.org/10.1021/jp026731y CrossRefGoogle Scholar
  39. Kim HW et al (2013) Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342:91CrossRefGoogle Scholar
  40. Kobayashi H, Salahub DR, Ito T (1994) Dissociative adsorption of hydrogen molecule on MgO surfaces studied by the density functional method. J Phys Chem 98:5487–5492.  https://doi.org/10.1021/j100072a015 CrossRefGoogle Scholar
  41. Kung HH (1989) Transition metal oxides: surface chemistry and catalysis, vol 45. Elsevier, AmsterdamGoogle Scholar
  42. Lapin NV, D’yankova NY (2013) Hydrogen evolution kinetics during transition metal oxide-catalyzed ammonia borane hydrolysis. Inorg Mater 49:975–979.  https://doi.org/10.1134/s0020168513100063 CrossRefGoogle Scholar
  43. Lee G-J, Kim JW, Shim J-H, Cho YW, Lee KS (2007a) Synthesis of ultrafine titanium aluminide powders and their catalytic enhancement in dehydrogenation kinetics of NaAlH4. Scr Mater 56:125–128.  https://doi.org/10.1016/j.scriptamat.2006.09.027 CrossRefGoogle Scholar
  44. Lee G-J, Shim J-H, Whan Cho Y, Sub Lee K (2007b) Reversible hydrogen storage in NaAlH4 catalyzed with lanthanide oxides. Int J Hydrog Energy 32:1911–1915.  https://doi.org/10.1016/j.ijhydene.2006.10.023 CrossRefGoogle Scholar
  45. Lee G-J, Shim J-H, Cho YW, Lee KS (2008) Improvement in desorption kinetics of NaAlH4 catalyzed with TiO2 nanopowder. Int J Hydrog Energy 33:3748–3753.  https://doi.org/10.1016/j.ijhydene.2008.04.035 CrossRefGoogle Scholar
  46. Léon A, Kircher O, Rothe J, Fichtner M (2004) Chemical state and local structure around titanium atoms in NaAlH4 doped with TiCl3 using x-ray absorption spectroscopy. J Phys Chem B 108:16372–16376.  https://doi.org/10.1021/jp048615w CrossRefGoogle Scholar
  47. Li P, Li Z, Zhai F, Wan Q, Li X, Qu X, Volinsky AA (2013) NiFe2O4 nanoparticles catalytic effects of improving LiAlH4 dehydrogenation properties. J Phys Chem C 117:25917–25925.  https://doi.org/10.1021/jp408364p CrossRefGoogle Scholar
  48. Li C, Liu Y, Ma R, Zhang X, Li Y, Gao M, Pan H (2014) Superior dehydrogenation/hydrogenation kinetics and long-term cycling performance of K and Rb Cocatalyzed Mg(NH2)2-2LiH system. ACS Appl Mater Interfaces 6:17024–17033.  https://doi.org/10.1021/am504592x CrossRefGoogle Scholar
  49. Ma J, Li J, Tang RY, Li WZ, Chen QY (2012) Effects of porous Al_2O_3/SiO_2 on hydrogen storage capacities of NaAlH_4-Tm_2O_3 system [J]. Chin J Nonferrous Met 6:017Google Scholar
  50. Ma T, Isobe S, Wang Y, Hashimoto N, Ohnuki S (2013) Nb-gateway for hydrogen desorption in Nb2O5 catalyzed MgH2 nanocomposite. J Phys Chem C 117:10302–10307.  https://doi.org/10.1021/jp4021883 CrossRefGoogle Scholar
  51. Majzoub EH, Gross KJ (2003) Titanium–halide catalyst-precursors in sodium aluminum hydrides. J Alloys Compd 356–357:363–367.  https://doi.org/10.1016/S0925-8388(03)00113-0 CrossRefGoogle Scholar
  52. Miwa K, Ohba N, Towata S-i, Nakamori Y, Orimo S-i (2005) First-principles study on lithium amide for hydrogen storage. Phys Rev B 71:195109CrossRefGoogle Scholar
  53. Morioka H, Kakizaki K, Chung S-C, Yamada A (2003) Reversible hydrogen decomposition of KAlH4. J Alloys Compd 353:310–314.  https://doi.org/10.1016/S0925-8388(02)01307-5 CrossRefGoogle Scholar
  54. Nielsen TK, Jensen TR (2012) MgH2–Nb2O5 investigated by in situ synchrotron X-ray diffraction. Int J Hydrog Energy 37:13409–13416.  https://doi.org/10.1016/j.ijhydene.2012.06.082 CrossRefGoogle Scholar
  55. Norris DJ, Bawendi M (1996) Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys Rev B 53:16338CrossRefGoogle Scholar
  56. Oelerich W, Klassen T, Bormann R (2001a) Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen sorption of nanocrystalline Mg. J Alloys Compd 322:L5–L9.  https://doi.org/10.1016/S0925-8388(01)01173-2 CrossRefGoogle Scholar
  57. Oelerich W, Klassen T, Bormann R (2001b) Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd 315:237–242.  https://doi.org/10.1016/S0925-8388(00)01284-6 CrossRefGoogle Scholar
  58. Orimo S-i, Nakamori Y, Eliseo JR, Züttel A, Jensen CM (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132.  https://doi.org/10.1021/cr0501846 CrossRefGoogle Scholar
  59. Patah A, Takasaki A, Szmyd JS (2009) Influence of multiple oxide (Cr2O3/Nb2O5) addition on the sorption kinetics of MgH2. Int J Hydrog Energy 34:3032–3037.  https://doi.org/10.1016/j.ijhydene.2009.01.086 CrossRefGoogle Scholar
  60. Polanski M, Bystrzycki J (2009) Comparative studies of the influence of different nano-sized metal oxides on the hydrogen sorption properties of magnesium hydride. J Alloys Compd 486:697–701.  https://doi.org/10.1016/j.jallcom.2009.07.042 CrossRefGoogle Scholar
  61. Polanski M, Bystrzycki J, Varin RA, Plocinski T, Pisarek M (2011) The effect of chromium (III) oxide (Cr2O3) nanopowder on the microstructure and cyclic hydrogen storage behavior of magnesium hydride (MgH2). J Alloys Compd 509:2386–2391.  https://doi.org/10.1016/j.jallcom.2010.11.026 CrossRefGoogle Scholar
  62. Porcu M, Petford-Long AK, Sykes JM (2008) TEM studies of Nb2O5 catalyst in ball-milled MgH2 for hydrogen storage. J Alloys Compd 453:341–346.  https://doi.org/10.1016/j.jallcom.2006.11.147 CrossRefGoogle Scholar
  63. Pukazhselvan D (2012) Effect of crystallite size of Al on the reversible hydrogen storage of NaAlH4 and few aspects of catalysts and catalysis. Int J Hydrog Energy 37:9696–9705.  https://doi.org/10.1016/j.ijhydene.2012.03.098 CrossRefGoogle Scholar
  64. Pukazhselvan D, Hudson MSL, Sinha ASK, Srivastava ON (2010) Studies on metal oxide nanoparticles catalyzed sodium aluminum hydride. Energy 35:5037–5042.  https://doi.org/10.1016/j.energy.2010.08.015 CrossRefGoogle Scholar
  65. Pukazhselvan D, Kumar V, Singh SK (2012) High capacity hydrogen storage: basic aspects, new developments and milestones. Nano Energy 1:566–589.  https://doi.org/10.1016/j.nanoen.2012.05.004 CrossRefGoogle Scholar
  66. Pukazhselvan D, Antunes I, Lo Russo S, Perez J, Fagg DP (2014a) Synthesis of catalytically active rock salt structured MgxNb1−xO nanoparticles for MgH2 system. Int J Hydrog Energy 39:18984–18988.  https://doi.org/10.1016/j.ijhydene.2014.08.138 CrossRefGoogle Scholar
  67. Pukazhselvan D, Capurso G, Maddalena A, Lo Russo S, Fagg DP (2014b) Hydrogen storage characteristics of magnesium impregnated on the porous channels of activated charcoal scaffold. Int J Hydrog Energy 39:20045–20053.  https://doi.org/10.1016/j.ijhydene.2014.10.038 CrossRefGoogle Scholar
  68. Pukazhselvan D, Fagg DP, Srivastava ON (2015) One step high pressure mechanochemical synthesis of reversible alanates NaAlH4 and KAlH4. Int J Hydrog Energy 40:4916–4924.  https://doi.org/10.1016/j.ijhydene.2015.01.186 CrossRefGoogle Scholar
  69. Pukazhselvan D, Bdikin I, Perez J, Carbó-Argibay E, Antunes I, Stroppa DG, Fagg DP (2016a) Formation of Mg–Nb–O rock salt structures in a series of mechanochemically activated MgH2 + nNb2O5 (n = 0.083–1.50) mixtures. Int J Hydrog Energy 41:2677–2688.  https://doi.org/10.1016/j.ijhydene.2015.12.077 CrossRefGoogle Scholar
  70. Pukazhselvan D, Nasani N, Pérez J, Hortigüela MJ, Yang T, Bdikin I, Fagg DP (2016b) Two step mechanochemical synthesis of Nb doped MgO rock salt nanoparticles and its application for hydrogen storage in MgH2. Int J Hydrog Energy 41:11716–11722.  https://doi.org/10.1016/j.ijhydene.2015.11.175 CrossRefGoogle Scholar
  71. Pukazhselvan D, Otero-Irurueta G, Pérez J, Singh B, Bdikin I, Singh MK, Fagg DP (2016c) Crystal structure, phase stoichiometry and chemical environment of MgxNbyOx+y nanoparticles and their impact on hydrogen storage in MgH2. Int J Hydrog Energy 41:11709–11715.  https://doi.org/10.1016/j.ijhydene.2016.04.029 CrossRefGoogle Scholar
  72. Pukazhselvan D, Perez J, Nasani N, Bdikin I, Kovalevsky AV, Fagg DP (2016d) Formation of MgxNbyOx+y through the mechanochemical reaction of MgH2 and Nb2O5, and its effect on the hydrogen-storage behavior of MgH2. Chem Phys Chem 17:178–183.  https://doi.org/10.1002/cphc.201500620 CrossRefGoogle Scholar
  73. Pukazhselvan D, Nasani N, Correia P, Carbó-Argibay E, Otero-Irurueta G, Stroppa DG, Fagg DP (2017a) Evolution of reduced Ti containing phase(s) in MgH2/TiO2 system and its effect on the hydrogen storage behavior of MgH2. J Power Sources 362:174–183.  https://doi.org/10.1016/j.jpowsour.2017.07.032 CrossRefGoogle Scholar
  74. Pukazhselvan D, Nasani N, Sandhya KS, Singh B, Bdikin I, Koga N, Fagg DP (2017b) Role of chemical interaction between MgH2 and TiO2 additive on the hydrogen storage behavior of MgH2. Appl Surf Sci 420:740–745.  https://doi.org/10.1016/j.apsusc.2017.05.182 CrossRefGoogle Scholar
  75. Puszkiel JA et al (2017) Changing the dehydrogenation pathway of LiBH4-MgH2via nanosized lithiated TiO2. Phys Chem Chem Phys 19:7455–7460.  https://doi.org/10.1039/C6CP08278E CrossRefGoogle Scholar
  76. Rafi ud d, Xuanhui Q, Ping L, Zhang L, Ahmad M (2011) Hydrogen sorption improvement of LiAlH4 catalyzed by Nb2O5 and Cr2O3 nanoparticles. J Phys Chem C 115:13088–13099.  https://doi.org/10.1021/jp202969y CrossRefGoogle Scholar
  77. Rafi ud d et al (2012) Superior catalytic effects of Nb2O5, TiO2, and Cr2O3 nanoparticles in improving the hydrogen sorption properties of NaAlH4. J Phys Chem C 116:11924–11938.  https://doi.org/10.1021/jp302474c CrossRefGoogle Scholar
  78. Rahman MW, Livraghi S, Dolci F, Baricco M, Giamello E (2011) Hydrogen sorption properties of Ternary Mg–Nb–O phases synthesized by solid–state reaction. Int J Hydrog Energy 36:7932–7936.  https://doi.org/10.1016/j.ijhydene.2011.01.053 CrossRefGoogle Scholar
  79. Sadhasivam T, Sterlin Leo Hudson M, Pandey SK, Bhatnagar A, Singh MK, Gurunathan K, Srivastava ON (2013) Effects of nano size mischmetal and its oxide on improving the hydrogen sorption behaviour of MgH2. Int J Hydrog Energy 38:7353–7362.  https://doi.org/10.1016/j.ijhydene.2013.04.040 CrossRefGoogle Scholar
  80. Sandhya KS, Pukazhselvan D, Fagg DP, Koga N (2016) Interaction of magnesium hydride clusters with Nb doped MgO additive studied by density functional calculations. RSC Adv 6:61200–61206.  https://doi.org/10.1039/C6RA11281A CrossRefGoogle Scholar
  81. Sapra S, Sarma DD (2004) Evolution of the electronic structure with size in II-VI semiconductor nanocrystals. Phys Rev B 69:125304CrossRefGoogle Scholar
  82. Schlapbach L (1981) XPS/UPS study of the oxidation of La and LaNi5 and of the electronic structure of LaNi5. Solid State Commun 38:117–123.  https://doi.org/10.1016/0038-1098(81)90802-4 CrossRefGoogle Scholar
  83. Schoenitz M, Zhu X, Dreizin EL (2004) Mechanical alloys in the Al-rich part of the Al-Ti binary system. J Metastable Nanocryst Mater 20–21, 455–461. Trans Tech PublGoogle Scholar
  84. Schwarz JA, Contescu CI, Putyera K (2004) Dekker encyclopedia of nanoscience and nanotechnology, vol 3. CRC press, Boca RatonGoogle Scholar
  85. Wallace WE, Karlicek RF, Imamura H (1979) Mechanism of hydrogen absorption by lanthanum-nickel (LaNi5). J Phys Chem 83:1708–1712.  https://doi.org/10.1021/j100476a006 CrossRefGoogle Scholar
  86. Wan LF et al (2017) Atomically thin interfacial suboxide key to hydrogen storage performance enhancements of magnesium nanoparticles encapsulated in reduced graphene oxide. Nano Lett 17:5540–5545.  https://doi.org/10.1021/acs.nanolett.7b02280 CrossRefGoogle Scholar
  87. Weaver JH, Franciosi A, Wallace WE, Smith HK (1980) Electronic structure and surface oxidation of LaNi5, Er6Mn23, and related systems. J Appl Phys 51:5847–5851.  https://doi.org/10.1063/1.327544 CrossRefGoogle Scholar
  88. Wu G, Zhang J, Wu Y, Li Q, Chou K, Bao X (2009) Adsorption and dissociation of hydrogen on MgO surface: a first-principles study. J Alloys Compd 480:788–793.  https://doi.org/10.1016/j.jallcom.2009.02.086 CrossRefGoogle Scholar
  89. Yu PY, Cardona M (1996) Fundamentals of semiconductors: physics and materials properties. Springer, HeidelbergCrossRefGoogle Scholar
  90. Yu XB, Grant DM, Walker GS (2009) Dehydrogenation of LiBH4 destabilized with various oxides. J Phys Chem C 113:17945–17949.  https://doi.org/10.1021/jp906519p CrossRefGoogle Scholar
  91. Yuan H et al (2012) Influence of metal oxide on LiBH4/2LiNH2/MgH2 system for hydrogen storage properties. Int J Hydrog Energy 37:3292–3297.  https://doi.org/10.1016/j.ijhydene.2011.11.065 CrossRefGoogle Scholar
  92. Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504.  https://doi.org/10.1002/anie.201303971 CrossRefGoogle Scholar
  93. Zaluska A, Zaluski L, Ström-Olsen J (2001) Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl Phys A 72:157–165CrossRefGoogle Scholar
  94. Zaluski L, Zaluska A, Ström-Olsen JO (1997) Nanocrystalline metal hydrides. J Alloys Compd 253–254:70–79.  https://doi.org/10.1016/S0925-8388(96)02985-4 CrossRefGoogle Scholar
  95. Zhang M, Li J, Li H, Li Y, Shen W (2009) Morphology-dependent redox and catalytic properties of CeO2 nanostructures: nanowires, nanorods and nanoparticles. Catal Today 148:179–183CrossRefGoogle Scholar
  96. Zhang T, Isobe S, Wang Y, Hashimoto N, Ohnuki S (2014a) A homogeneous metal oxide catalyst enhanced solid–solid reaction in the hydrogen desorption of a lithium–hydrogen–nitrogen system. ChemCatChem 6:724–727.  https://doi.org/10.1002/cctc.201301068 CrossRefGoogle Scholar
  97. Zhang T, Isobe S, Wang Y, Oka H, Hashimoto N, Ohnuki S (2014b) A metal-oxide catalyst enhanced the desorption properties in complex metal hydrides. J Mater Chem A 2:4361–4365.  https://doi.org/10.1039/C3TA15294D CrossRefGoogle Scholar
  98. Zhao-Karger Z, Hu J, Roth A, Wang D, Kubel C, Lohstroh W, Fichtner M (2010) Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold. Chem Commun 46:8353–8355.  https://doi.org/10.1039/C0CC03072D CrossRefGoogle Scholar
  99. Zlotea C, Oumellal Y, Hwang S-J, Ghimbeu CM, de Jongh PE, Latroche M (2015) Ultrasmall MgH2 nanoparticles embedded in an ordered microporous carbon exhibiting rapid hydrogen sorption kinetics. J Phys Chem C 119:18091–18098.  https://doi.org/10.1021/acs.jpcc.5b05754 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • D. Pukazhselvan
    • 1
    Email author
  • Narendar Nasani
    • 2
  • S. K. Singh
    • 3
  • Duncan Paul Fagg
    • 1
  1. 1.Nanoengineering Research Group, Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal
  2. 2.Centre for Materials for Electronics TechnologyPuneIndia
  3. 3.Department of PhysicsD.C.R. University of Science and TechnologyMurthalIndia

Personalised recommendations