Nanomaterials for CO2 Hydrogenation

  • Manuel Romero-SáezEmail author
  • Leyla Y. Jaramillo
  • Wilson Henao
  • Unai de la Torre
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 23)


The use of fossil fuels such as coal, oil, and natural gas has allowed a fast and unprecedented development of human society. However, this has led to a continuous increase in anthropogenic CO2 emissions, which affect human life and the ecological environment through global warming and climate changes. There are various strategies to mitigate the atmospheric concentration of CO2, such as capture, separation, and utilization. Among them, CO2 hydrogenation to obtain different products through catalytic processes is a strategy of great interest. Thus, the catalytic combination of CO2 and hydrogen not only mitigates anthropogenic emissions into Earth’s atmosphere, but it also produces carbon compounds that can be used as fuel or precursors for the production of different chemicals.

This chapter reviews the use of different nanomaterials for CO2 hydrogenation. Three different processes are distinguished, depending on the final product: (i) CO2 hydrogenation to carbon monoxide, (ii) methanol production by CO2 hydrogenation, and (iii) CO2 hydrogenation to methane. It has been included both nanomaterials that act as support and those that can replace the active metal phase. Concerning CO2 hydrogenation to CO, one-dimensional transition metal carbides have received increasing attention because their unique electronic structure allows similar catalytic properties to the expensive noble metals. Attending the high thermal requirements of CO synthesis, emerging metal oxides nanocatalysts are focused to prevent the metal sintering by increasing the metal-support interactions. Controlling the support’s morphology at nanoscale can enhance both catalytic activity and stability at high temperatures up to twice with respect to those conventional micro-sized catalysts. Regarding to methanol production, the nanomaterials most commonly used as supports are those based on carbon, e.g., carbon nanotubes, carbon nanofibers, and graphene oxide. The main advantage of using these materials is their high surface area, which improves metallic phase dispersion, higher thermal and electrical conductivities, and greater mechanical resistance. In addition, the use of intermetallic nanoparticles as an active phase is very promising. The combination of two metals in the same nanoparticle greatly increases the interface between components, which clearly leads to a synergistic effect between them. The use of these nanomaterials improves the activity and selectivity to methanol between 2 and ~50%, compared with classical catalysts. Moreover, similar strategies are equally valid in methane production. Catalysts based on nanoparticles, such as Ni or NiO, supported on traditional metal oxides have been recently reported to improve catalytic activity in CO2 methanation with high resistance to coke deposition. Other supports, such as carbon nanofibers and carbon nanotubes previously mentioned, have shown excellent results, with CO2 conversions higher than 90% and complete selectivity to methane. Finally, TiO2-based catalysts are a promising solution for methane production by the still undeveloped photocatalytic reduction. This reaction can be performed under mild temperatures and pressure conditions, which is a clear advantage for methane synthesis.


CO2 hydrogenation Nanomaterials Carbon monoxide Methanol Methane Carbon nanotubes Carbon nanofibers Graphene oxide Nanoparticles Transition metal carbide 



Carbon nanofiber


Carbon nanotube


Graphene oxide


Reduced graphene oxide


Reverse water-gas shift


Transition metal carbide



U. de la Torre is grateful to Universidad del País Vasco/EHU (Postdoctoral Project ESPDOC16/69).


  1. Albo J, Irabien A (2016) Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J Catal 343:232–239. CrossRefGoogle Scholar
  2. Ali KA, Abdullah AZ, Mohamed AR (2015) Recent development in catalytic technologies for methanol synthesis from renewable sources: a critical review. Renew Sustain Energ Rev 44:508–518. CrossRefGoogle Scholar
  3. Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR (2014) Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl Catal B Environ 147:359–368. CrossRefGoogle Scholar
  4. Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Covillle NJ (2005) Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes. Appl Catal A Gen 287:60–67. CrossRefGoogle Scholar
  5. Balakumar V, Prakash P (2016) A facile in situ synthesis of highly active and reusable ternary Ag-PPy-GO nanocomposite for catalytic oxidation of hydroquinone in aqueous solution. J Catal 344:795–805. CrossRefGoogle Scholar
  6. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059. CrossRefGoogle Scholar
  7. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212(1–2):17–60. CrossRefGoogle Scholar
  8. Berber S, Kwon Y-K, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613–4616. CrossRefGoogle Scholar
  9. Bhanja P, Modak A, Bhaumik A (2018) Supported porous nanomaterials as efficient heterogeneous catalysts for CO2 fixation reactions. Chem Eur J.
  10. Brooks KP, Hu J, Zhu H, Kee RJ (2007) Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chem Eng Sci 62:1161–1170. CrossRefGoogle Scholar
  11. Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731. CrossRefGoogle Scholar
  12. Chabot V, Higgins D, Yu A, Xiao X, Chen Z, Zhang J (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7:1564–1596. CrossRefGoogle Scholar
  13. Chen L, Li Y, Chen L, Li N, Dong C, Chen Q, Liu B, Ai Q, Si P, Feng J, Zhang L, Suhr J, Lou J, Ci L (2018) A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications. Chem Eng J 345:536–544. CrossRefGoogle Scholar
  14. Chesnokov VV, Podyacheva OY, Richards RM (2017) Influence of carbon nanomaterials on the properties of Pd/C catalysts in selective hydrogenation of acetylene. Mater Res Bull 88:78–84. CrossRefGoogle Scholar
  15. Chiang CL, Lin KS, Hsu PJ, Lin YG (2017) Synthesis and characterization of magnetic zinc and manganese ferrite catalysts for decomposition of carbon dioxide into methane. Inter J Hydro Energy 42:22123–22137. CrossRefGoogle Scholar
  16. Collins SE, Baltanás MA, Bonivardi AL (2004) An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga2O3. J Catal 226(2):410–421. CrossRefGoogle Scholar
  17. Collins SE, Delgado JJ, Mira C, Calvino JJ, Bernal S, Chiavassa DL, Baltanás MA, Bonivardi AL (2012) The role of Pd–Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst. J Catal 292:90–98. CrossRefGoogle Scholar
  18. Daza YA, Kuhn JN (2016) CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv 6(55):49675–49691. CrossRefGoogle Scholar
  19. Deerattrakul V, Dittanet P, Sawangphruk M, Kongkachuichay P (2016) CO2 hydrogenation to methanol using Cu-Zn catalyst supported on reduced graphene oxide nanosheets. J CO2 Util 16:104–113.
  20. Díaz-Taboada C, Batista J, Pintar A, Levec J (2009) Preparation, characterization and catalytic properties of carbon nanofiber-supported Pt, Pd, Ru monometallic particles in aqueous-phase reactions. Appl Catal B Environ 89:375–382. CrossRefGoogle Scholar
  21. Díez-Ramírez J, Sánchez P, Rodríguez-Gómez A, Valverde JL, Dorado F (2016) Carbon nanofiber-based palladium/zinc catalysts for the hydrogenation of carbon dioxide to methanol at atmospheric pressure. Ind Eng Chem Res 55(12):3556–3567. CrossRefGoogle Scholar
  22. Dou J, Sheng Y, Choong C, Chen L, Zeng HC (2017) Silica nanowires encapsulated Ru nanoparticles as stable nanocatalysts for selective hydrogenation of CO2 to CO. Appl Catal B Environ 219:580–591. CrossRefGoogle Scholar
  23. Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49(6):705–814. CrossRefGoogle Scholar
  24. Du G, Lim S, Yang Y, Wang C, Pfefferle L, Haller G (2007) Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: the influence of catalyst pretreatment and study of steady-state reaction. J Catal 249:370–379. CrossRefGoogle Scholar
  25. Fan YJ, Wu SF (2016) A graphene-supported copper-based catalyst for the hydrogenation of carbon dioxide to form methanol. J CO2 Util 16:150–156. CrossRefGoogle Scholar
  26. Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5):3919–3945. CrossRefGoogle Scholar
  27. Fiordaliso EM, Sharafutdinov I, Carvalho HW, Grunwaldt JD, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD (2015) Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catal 5(10):5827–5836. CrossRefGoogle Scholar
  28. Fishman ZS, He Y, Yang KR, Lounsbury A, Zhu J, Tran TM, Zimmerman JB, Batista VS, Pfefferle LD (2017) Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO2 to CO conversion via the reverse water shift reaction. Nanoscale 9:12984–12995. CrossRefGoogle Scholar
  29. Frey M, Édouard D, Roger AC (2015) Optimization of structured cellular foam-based catalysts for low-temperature carbon dioxide methanation in a platelet milli-reactor. C R Chim 18:283–292. CrossRefGoogle Scholar
  30. Gac W, Zawadzki W, Słowik G, Sienkiewicz A, Kierys A (2018) Nickel catalysts supported on silica microspheres for CO2 methanation. Microporous Mesoporous Mater 272:79–91. CrossRefGoogle Scholar
  31. Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv 2:2358–2368. CrossRefGoogle Scholar
  32. Gao J, Wu Y, Jia C, Zhong Z, Gao F, Yang Y, Liu B (2016) Controllable synthesis of α-MoC1-x and β-Mo2C nanowires for highly selective CO2 reduction to CO. Catal Commun 84(5):147–150. CrossRefGoogle Scholar
  33. Ghaib K, Ben-Fares FZ (2018) Power-to-methane: a state-of-the-art review. Renew Sustain Energ Rev 81:433–446. CrossRefGoogle Scholar
  34. Ghaib K, Nitz K, Ben-Fares FZ (2016) Chemical methanation of CO2: a review. Chem Bio Eng Rev 3(6):266–275. CrossRefGoogle Scholar
  35. Goeppert A, Czaun M, Jones JP, Prakash GS, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem Soc Rev 43(23):7995–8048. CrossRefGoogle Scholar
  36. Götz M, Ortloff F, Reimert R, Basha O, Morsi BI, Kolb T (2013) Evaluation of organic and ionic liquids for three-phase methanation and biogas purification processes. Energy Fuel 27(8):4705–4716. CrossRefGoogle Scholar
  37. Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T (2015) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390. CrossRefGoogle Scholar
  38. Habazaki H, Yamasaki M, Zhang B, Kawashima A, Kohno S, Takai T, Hashimoto K (1998) Co-methanation of carbon monoxide and carbon dioxide on supported nickel and cobalt catalysts prepared from amorphous alloys. Appl Catal A Gen 172(1):131–140. CrossRefGoogle Scholar
  39. Hartadi Y, Widmann D, Behm RJ (2015) CO2 hydrogenation to methanol on supported au catalysts under moderate reaction conditions: support and particle size effects. ChemSusChem 8(3):456–465. CrossRefGoogle Scholar
  40. Hashimoto K, Yamasaki M, Fujimura K, Matsui T, Izumiya K, Komori M, El-Moneim AA, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Asami A (1999) Global CO2 recycling – novel materials and prospect for prevention of global warming and abundant energy supply. Mater Sci Eng A 267(2):200–206. CrossRefGoogle Scholar
  41. He S, Li C, Chen H, Su D, Zhang B, Cao X, Wang B, Wei M, Evans DG, Duan X (2013) A surface defect-promoted Ni nanocatalyst with simultaneously enhanced activity and stability. Chem Mater 25:1040–1046. CrossRefGoogle Scholar
  42. Hiller H, Reimert R (2006) Types of gases. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 10Google Scholar
  43. Hou Z, Gao J, Guo J, Liang D, Lou H, Zheng X (2007) Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor. J Catal 250(2):331–341. CrossRefGoogle Scholar
  44. Hu J, Brooks KP, Holladay JD, Howe DT, Simon TM (2007) Catalyst development for microchannel reactors for martian in situ propellant production. Catal Today 125(1–2):103–110. CrossRefGoogle Scholar
  45. Hu B, Yin Y, Liu G, Chen S, Hong X, Tsang SCE (2018) Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts. J Catal 359:17–26. CrossRefGoogle Scholar
  46. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. CrossRefGoogle Scholar
  47. Jacob-Lopes E, Scoparo CHG, Queiroz MI, Franco TT (2010) Biotransformations of carbon dioxide in photobioreactors. Energy Convers Manag 51(5):894–900. CrossRefGoogle Scholar
  48. Jiménez V, Sánchez P, Panagiotopoulou P, Valverde JL, Romero A (2010) Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts. Appl Catal A Gen 390(1–2):35–44. CrossRefGoogle Scholar
  49. Jiménez V, Jiménez-Borja C, Sánchez P, Romero A, Papaioannou EI, Theleritis D, Souentie S, Brosdac S, Valverde JL (2011) Electrochemical promotion of the CO2 hydrogenation reaction on composite Ni or Ru impregnated carbon nanofiber catalyst-electrodes deposited on YSZ. Appl Catal B Environ 107(1–2):210–220. CrossRefGoogle Scholar
  50. Jin J, Yu J, Cui C, Ho W (2015) A hierarchical Z-scheme CdS–WO3 photocatalyst with enhanced CO2 reduction activity. Small 11(39):5262–5271. CrossRefGoogle Scholar
  51. Jurković DL, Pohar A, Dasireddy DBC, Likozar B (2017) Effect of copper-based catalyst support on reverse water-gas shift reaction (RWGS) activity for CO2 reduction. Chem Eng Technol 40(5):973–980. CrossRefGoogle Scholar
  52. Jwa E, Lee SB, Lee HW, Mok YS (2013) Plasma-assisted catalytic methanation of CO and CO2 over Ni–zeolite catalysts. Fuel Process Technol 108:89–93. CrossRefGoogle Scholar
  53. Kang SH, Ryu JH, Kim JH, Seo SJ, Yoo YD, Prasad PSS, Lim H-J, Byun C-D (2011) Co-methanation of CO and CO2 on the Nix-Fe1-x/Al2O3 catalysts; effect of Fe contents. Korean J Chem Eng 28(12):2282–2286. CrossRefGoogle Scholar
  54. Kao YL, Lee PH, Tseng YT, Chien IL, Ward JD (2014) Design, control and comparison of fixed-bed methanation reactor systems for the production of substitute natural gas. J Taiwan Inst Chem E 45(5):2346–2357. CrossRefGoogle Scholar
  55. Kattel S, Liu P, Chen JG (2017) Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J Am Chem Soc 139(29):9739–9754. CrossRefGoogle Scholar
  56. Kesavan JK, Luisetto I, Tuti S, Meneghini C, Battocchio C, Iucci G (2017) Ni supported on YSZ: XAS and XPS characterization and catalytic activity for CO2 methanation. J Mater Sci 57(17):10331–10340. CrossRefGoogle Scholar
  57. Kesavan JK, Luisetto I, Tuti S, Meneghini C, Iucci G, Battocchio C, Mobilio S, Casciardi S, Sisto R (2018) Nickel supported on YSZ: the effect of Ni particle size on the catalytic activity for CO2 methanation. J CO2 Util 23:200–211.
  58. Khorasani-Motlagh M, Noroozifar M, Ahanin-Jan A (2012) Ultrasonic and microwave-assisted co-precipitation synthesis of pure phase LaFeO3 perovskite nanocrystals. J Iran Chem Soc 9(5):833–839. CrossRefGoogle Scholar
  59. Kierzkowska-Pawlak H, Tracz P, Redzynia W, Tyczkowski J (2017) Plasma deposited novel nanocatalysts for CO2 hydrogenation to methane. J CO2 Util 17:312–319. CrossRefGoogle Scholar
  60. Kim DH, Han SW, Yoon HS, Kim YD (2015) Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability. J Ind Eng Chem 23:67–71. CrossRefGoogle Scholar
  61. Kim SM, Abdala PM, Broda M, Hosseini D, Copéret C, Müller CR (2018) Integrated CO2 capture and conversion as an efficient process for fuels from greenhouse gases. ACS Catal 8:2815–2823. CrossRefGoogle Scholar
  62. Kiss AA, Pragt JJ, Vos HJ, Bargeman G, de Groot MT (2016) Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem Eng J 284:260–269. CrossRefGoogle Scholar
  63. Kovacevic M, Mojet BL, Van Ommen JG, Lefferts L (2016) Effects of morphology of cerium oxide catalysts for reverse water gas shift reaction. Catal Lett 146(4):770–777. CrossRefGoogle Scholar
  64. Kunkel C, Viñes F, Illas F (2016) Transition metal carbides as novel materials for CO2 capture, storage, and activation. Energy Environ Sci 9(1):141–144. CrossRefGoogle Scholar
  65. Kurtz M, Wilmer H, Genger T, Hinrichsen O, Muhler M (2003) Deactivation of supported copper catalysts for methanol synthesis. Catal Lett 86(1–3):77–80. CrossRefGoogle Scholar
  66. Kwak JH, Kovarik L, Szanyi J (2013) CO2 reduction on supported Ru/Al2O3 catalysts: cluster size dependence of product selectivity. ACS Catal 3(11):2449–2455. CrossRefGoogle Scholar
  67. Kwak JH, Kovarik L, Szanyi J (2013a) Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal 3:2094–2100. CrossRefGoogle Scholar
  68. La Tempa TJ, Rani S, Bao N, Grimes CA (2012) Generation of fuel from CO2 saturated liquids using a p-Si nanowire k n-TiO2 nanotube array photoelectrochemical cell. Nanoscale 4(7):2245–2250. CrossRefGoogle Scholar
  69. Ledoux MC, Pham-Huu C (2005) Carbon nanostructures with macroscopic shaping for catalytic applications. Catal Today 102–103:2–14. CrossRefGoogle Scholar
  70. Lefebvre J, Götz M, Bajohr S, Reimert R, Kolb T (2015) Improvement of three-phase methanation reactor performance for steady-state and transient operation. Fuel Process Technol 132:83–90. CrossRefGoogle Scholar
  71. Li Q, Zong L, Li C, Yang J (2014) Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films. Appl Surf Sci 314:458–463. CrossRefGoogle Scholar
  72. Li M, Zhou S, Xu M (2017) Graphene oxide supported magnesium oxide as an efficient cathode catalyst for power generation and wastewater treatment in single chamber microbial fuel cells. Chem Eng J 328:106–116. CrossRefGoogle Scholar
  73. Liang XL, Dong X, Lin G-D, Zhang H-B (2009) Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Appl Catal B Environ 88(3–4):315–322. CrossRefGoogle Scholar
  74. Liang XL, Xie J-R, Liu Z-M (2015) A novel Pd-decorated carbon nanotubes-promoted Pd-ZnO catalyst for CO2 hydrogenation to methanol. Catal Lett 145(5):1138–1147. CrossRefGoogle Scholar
  75. Lin L, Yao S, Liu Z, Zhang F, Na L, Vovchok D, Martínez-Arias A, Castañeda R, Lin J, Senanayake SD, Su D, Ma D, Rodriguez JA (2018) In-situ characterization of Cu/CeO2 nanocatalysts during CO2 hydrogenation: morphological effects of nanostructured ceria on the catalytic activity. J Phys Chem C 122(24):12934–12943. CrossRefGoogle Scholar
  76. Liu G, Hoivik N, Wang K, Jakobsen H (2012a) Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol Energy Mater Sol Cells 105:53–68. CrossRefGoogle Scholar
  77. Liu Z, Chu B, Zhai X, Jin Y, Cheng Y (2012b) Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor. Fuel 95:599–605. CrossRefGoogle Scholar
  78. Liu Y, Li Z, Xu H, Han Y (2016) Reverse water-gas shift reaction over ceria nanocube synthesized by hydrothermal method. Catal Commun 76(3):1–6. CrossRefGoogle Scholar
  79. Liu Z, Wang Z, Qing S, Xue N, Jia S, Zhang L, Li L, Li N, Shi L, Chen J (2018) Improving methane selectivity of photo-induced CO2 reduction on carbon dots through modification of nitrogen-containing groups and graphitization. Appl Catal B Environ.
  80. Low J, Yu J, Ho W (2015) Graphene-based photocatalysts for CO2 reduction to solar fuel. J Phys Chem Lett 6(21):4244–4251. CrossRefGoogle Scholar
  81. Luisetto I, Tuti S, Battocchio C, Lo Mastro S, Sodo A (2015) Ni/CeO2–Al2O3 catalysts for the dry reforming of methane: the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance. Appl Catal A Gen 500:12–22. CrossRefGoogle Scholar
  82. Lunde PJ, Kester FL (1974) Carbon dioxide methanation on a ruthenium catalyst. Ind Eng Chem Proc Des Dev 13(1):27–33. CrossRefGoogle Scholar
  83. Ma J, Sun NN, Zhang XL, Zhao N, Mao FK, Wei W, Sun YH (2009) A short review of catalysis for CO2 conversion. Catal Today 148(3–4):221–231. CrossRefGoogle Scholar
  84. Mao J, Peng TY, Zhang XH, Li K, Ye LQ, Zan L (2012) Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation. Catal Commun 28:38–41. CrossRefGoogle Scholar
  85. Mao J, Peng TY, Zhang XH, Li K, Ye LQ, Zan L (2013) Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Cat Sci Technol 3(5):1253–1260. CrossRefGoogle Scholar
  86. Martin O, Mondelli C, Cervellino A, Ferri D, Curulla-Ferre D, Perez-Ramirez J (2016) Operando synchrotron X-ray powder diffraction and modulated-excitation infrared spectroscopy elucidate the CO2 promotion on a commercial methanol synthesis catalyst. Angew Chem Int Ed 55(37):11031–11036. CrossRefGoogle Scholar
  87. Mateo D, Albero J, García H (2018) Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl Catal B Environ 224:563–571. CrossRefGoogle Scholar
  88. Miguel CV, Soria MA, Mendes A, Madeira LM (2015) Direct CO2 hydrogenation to methane or methanol from post-combustion exhaust streams – a thermodynamic study. J Nat Gas Sci Eng 22:1–8. CrossRefGoogle Scholar
  89. Mills GA, Steffgen FW (1974) Catalytic methanation. Catal Rev 8:159–210. CrossRefGoogle Scholar
  90. Mutz B, Sprenger P, Wang W, Wang D, Kleist W, Grunwaldt JD (2018) Operando Raman spectroscopy on CO2 methanation over alumina-supported Ni, Ni3Fe and NiRh0.1 catalysts: role of carbon formation as possible deactivation pathway. Appl Catal A Gen 556:160–171. CrossRefGoogle Scholar
  91. Nishimura N, Kitaura S, Mimura A, Takahara Y (1992) Cultivation of thermophilic methanogen KN-15 on H2-CO2 under pressurized conditions. J Ferment Bioeng 73(6):477–480. CrossRefGoogle Scholar
  92. NOAA – National Oceanic and Atmospheric Administration (2018) Recent monthly average Mauna Loa CO2. Available online at trends/co2_trend_mlo.pdf. Accessed Mar 2018
  93. Ocampo F, Louis B, Kiwi-Minsker L, Roger A-C (2011) Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1−xO2 catalysts for carbon dioxide methanation. Appl Catal A Gen 392(1–2):36–44. CrossRefGoogle Scholar
  94. Olah GA, Goeppert A, Prakash GS (2008) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Organomet Chem 74(2):487–498. CrossRefGoogle Scholar
  95. Ota A, Kunkes EL, Kasatkin I, Groppo E, Ferri D, Poceiro B, Navarro Yerga RM, Behrens M (2012) Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts. J Catal 293:27–38. CrossRefGoogle Scholar
  96. Oyola-Rivera O, Baltanás MA, Cardona-Martínez N (2015) CO2 hydrogenation to 1methanol and dimethyl ether by Pd–Pd2Ga catalysts supported over Ga2O3 polymorphs. J CO2 Util 9:8–15.
  97. Park JN, McFarland EW (2009) A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2. J Catal 266(1):92–97. CrossRefGoogle Scholar
  98. Pastor-Pérez L, Baibars F, Le Sache E, Arellano-García H, Gu S, Reina TR (2017) CO2 valorisation via reverse water-gas shift reaction using advanced Cs doped Fe-Cu/Al2O3 catalysts. J CO2 Util 21:423–428.
  99. Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. Crit Rev Environ Control 21(5–6):411–490. CrossRefGoogle Scholar
  100. Peillex JP, Fardeau ML, Boussand R, Navarro JM, Belaich JP (1988) Growth of Methanococcus thermolithotrophicus in batch and continuous culture on H2 and CO2: influence of agitation. Appl Microbiol Biotechnol 29(6):560–564. CrossRefGoogle Scholar
  101. Pendashteh A, Rahmanifar MS, Mousavi MF (2014) Morphologically controlled preparation of CuO nanostructures under ultrasound irradiation and their evaluation as pseudocapacitor materials. Ultrason Sonochem 21(2):643–652. CrossRefGoogle Scholar
  102. Pöhlmann F, Jess A (2016) Influence of syngas composition on the kinetics of Fischer-Tropsch synthesis of using cobalt as catalyst. Energy Technol 4(1):55–64. CrossRefGoogle Scholar
  103. Porosoff MD, Yang X, Boscoboinik JA, Chen JG (2014) Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew Chem Int Ed 53(26):6705–6709. CrossRefGoogle Scholar
  104. Porosoff MD, Yan B, Chen JG (2016) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci 9(1):62–73. CrossRefGoogle Scholar
  105. Porosoff MD, Baldwin JW, Peng X, Mpourmpakis G, Willauer HD (2017) Potassium-promoted molybdenum carbide as a highly active and selective catalyst for CO2 conversion to CO. ChemSusChem 10(11):2408–2415. CrossRefGoogle Scholar
  106. Posada-Pérez S, Viñes F, Ramirez PJ, Vidal AB, Rodriguez JA, Illas F (2014) The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Phys Chem Chem Phys 16(28):14912–14921. CrossRefGoogle Scholar
  107. Posada-Pérez S, Viñes F, Rodriguez JA, Illas F (2015) Fundamentals of methanol synthesis on metal carbide based catalysts: activation of CO2 and H2. Top Catal 58(2–3):159–173. CrossRefGoogle Scholar
  108. Prasad K, Pinjari DV, Pandit AB, Mhaske ST (2010) Synthesis of titanium dioxide by ultrasound assisted sol-gel technique: effect of amplitude (power density) variation. Ultrason Sonochem 17:697–703. CrossRefGoogle Scholar
  109. Qu J, Zhang X, Wang Y, Xie C (2005) Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50(16–17):3576–3580. CrossRefGoogle Scholar
  110. Qu J, Zhou X, Xu F, Gong XQ, Tsang SCE (2014) Shape effect of Pd-promoted Ga2O3 nanocatalysts for methanol synthesis by CO2 hydrogenation. J Phys Chem C 118(42):24452–24466. CrossRefGoogle Scholar
  111. Quesne MG, Roldan A, de Leeuw NH, Catlow CRA (2018) Bulk and surface properties of metal carbides: implications for catalysis. Phys Chem Chem Phys 20:6905–6916. CrossRefGoogle Scholar
  112. Ramachandriya KD, Kundiyana DK, Wilkins MR, Terrill JB, Atiyeh HK, Huhnke RL (2013) Carbon dioxide conversion to fuels and chemicals using a hybrid green process. Appl Energy 112:289–299. CrossRefGoogle Scholar
  113. Rodriguez JA, Evans J, Feria L, Vidal AB, Liu P, Nakamura K, Illas F (2013) CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: production of CO, methanol, and methane. J Catal 307:162–169. CrossRefGoogle Scholar
  114. Rodriguez JA, Liu P, Stacchiola DJ, Senanayake SD, White MG, Chen JG (2015) Hydrogenation of CO2 to methanol: importance of metal–oxide and metal–carbide interfaces in the activation of CO2. ACS Catal 5(11):6696–6706CrossRefGoogle Scholar
  115. Romero-Sáez M, Dongil AB, Benito N, Espinoza-González R, Escalona N, Gracia F (2018) CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: a comparison between two impregnation strategies. Appl Catal B Environ 237:817–825. CrossRefGoogle Scholar
  116. Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Review on methanation – from fundamentals to current projects. Fuel 166:276–296. CrossRefGoogle Scholar
  117. Sabatier P, Senderens JB (1902) New synthesis of methane. Compt Rend 134:514–516Google Scholar
  118. Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products – a review and potential future developments. J CO2 Util 5:66–81.
  119. Sahebdelfar S, Ravanchi MT (2015) Carbon dioxide utilization for methane production: a thermodynamic analysis. J Pet Sci Eng 134:14–22. CrossRefGoogle Scholar
  120. Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107(6):2365–2387. CrossRefGoogle Scholar
  121. Samei E, Taghizadeh M, Bahmani M (2012) Enhancement of stability and activity of Cu/ZnO/Al2O3 catalysts by colloidal silica and metal oxides additives for methanol synthesis from a CO2-rich feed. Fuel Process Technol 96:128–133. CrossRefGoogle Scholar
  122. Schubert K, Brandner J, Fichtner M, Linder G, Schygulla U, Wenka A (2001) Microstructure devices for application in thermal and chemical process engineering. Microscale Thermophys Eng 5(1):17–39. CrossRefGoogle Scholar
  123. Schulte KL, DeSario PA, Gray KA (2010) Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light. Appl Catal B Environ 97(3–4):354–360. CrossRefGoogle Scholar
  124. Seemann L (2006) Methanation of biosyngas in a fluidized bed reactor – development of a one-step synthesis process, featuring simultaneous methanation, watergas shift and low temperature tar reforming. PhD thesis. ETH ZurichGoogle Scholar
  125. Seifert AH, Rittmann S, Herwig C (2014) Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Appl Energy 132:155–162. CrossRefGoogle Scholar
  126. Sepehri S, Rezaei M (2015) Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline gamma-Al2O3 for methane autothermal reforming. Chem Eng Technol 38(9):1637–1645. CrossRefGoogle Scholar
  127. Sharafutdinov I, Elkjær CF, de Carvalho HWP, Gardini D, Chiarello GL, Damsgaard CD, Wagner JB, Grunwaldt JD, Dahl S, Chorkendorff I (2014) Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. J Catal 320:77–88. CrossRefGoogle Scholar
  128. Shui J, Wang M, Du F, Dai L (2015) N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci Adv 1(1):e1400129. CrossRefGoogle Scholar
  129. Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State 26(3):145–249. CrossRefGoogle Scholar
  130. Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115(1–4):2–32. CrossRefGoogle Scholar
  131. Song F, Zhong Q, Yu Y, Shi M, Wu Y, Hu J, Song Y (2017) Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method. Int J Hydrog Energy 42(7):4174–4183. CrossRefGoogle Scholar
  132. Sterner M (2009) Bioenergy and renewable power methane in integrated 100% renewable energy systems – limiting global warming by transforming energy systems. PhD thesis. University of KasselGoogle Scholar
  133. Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjær CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6(4):320–324. CrossRefGoogle Scholar
  134. Su X, Yang X, Zhao B, Huang Y (2017) Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions. J Energy Chem 26(5):854–867. CrossRefGoogle Scholar
  135. Tan JZY, Fernandez Y, Liu D, Maroto-Valer M, Bian J, Zhang X (2012) Photo-reduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior. Chem Phys Lett 531:149–154. CrossRefGoogle Scholar
  136. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591. CrossRefGoogle Scholar
  137. Tóth M, Kiss J, Oszkó A, Pótári G, László B, Erdőhelyi A (2012) Hydrogenation of carbon dioxide on Rh, Au and Au–Rh bimetallic clusters supported on titanate nanotubes, nanowires and TiO2. Top Catal 55(11–13):747–756. CrossRefGoogle Scholar
  138. Tursunov O, Tilyabaev Z (2017) Hydrogenation of CO2 over Co supported on carbon nanotube, carbón nanotube-Nb2O5, carbon nanofiber, low-layered graphite fragments and Nb2O5. J Energy Inst.
  139. Ud Din I, Shaharun MS, Subbarao D, Naeem A (2015) Synthesis, characterization and activity pattern of carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: influence of calcination temperature. J Power Sources 274:619–628. CrossRefGoogle Scholar
  140. Ud Din I, Shaharun MS, Subbarao D, Naeem A, Hussain F (2016) Influence of niobium on carbon nanofibres based Cu/ZrO2 catalysts for liquid phase hydrogenation of CO2 to methanol. Catal Today 259(2):303–311. CrossRefGoogle Scholar
  141. Ud Din I, Shaharun MS, Naeem A, Tasleem S, Johan MR (2017) Carbon nanofiber-based copper/zirconia catalyst for hydrogenation of CO2 to methanol. J CO2 Util 21:145–155.
  142. Vargas E, Romero-Saéz M, Denardin JC, Gracia F (2016) The ultrasound-assisted synthesis of effective monodisperse nickel nanoparticles: magnetic characterization and its catalytic activity in CO2 methanation. New J Chem 40:7307–7310. CrossRefGoogle Scholar
  143. Vijayan B, Dimitrijevic NM, Rajh T, Gray K (2010) Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes. J Phys Chem C 114(30):12994–13002. CrossRefGoogle Scholar
  144. Wang J, Lu S, Li J, Li C (2015) Remarkable difference in CO2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes. Chem Commun 51(99):17615–17618. CrossRefGoogle Scholar
  145. Wang W, Chu W, Wang N, Yang W, Jiang C (2016) Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation. Int J Hydrog Energy 41:967–975. CrossRefGoogle Scholar
  146. Weatherbee GD, Bartholomew CH (1981) Hydrogenation of CO2 on group VIII metals: I. specific activity of Ni/SiO2. J Catal 68(1):67–76. CrossRefGoogle Scholar
  147. Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77(2):219–262. CrossRefGoogle Scholar
  148. Witoon T, Numpilai T, Phongamwong T, Donphai W, Boonyuen C, Warakulwit C, Chareonpanich M, Limtrakul J (2018) Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol. Chem Eng J 334:1781–1791. CrossRefGoogle Scholar
  149. Wu HC, Chang YC, Wu JH, Lin JH, Lin IK, Chen CS (2015) Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway. Cat Sci Technol 5(8):4154–4163. CrossRefGoogle Scholar
  150. Xia X, Jia Z, Yu Y, Liang Y, Wang Z, Ma L (2007) Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 45(4):717–721. CrossRefGoogle Scholar
  151. Xiaoding X, Moulijn JA (1996) Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energ Fuels 10(2):305–325. CrossRefGoogle Scholar
  152. Xu W, Ramírez PJ, Stacchiola D, Brito JL, Rodriguez JA (2015) The carburization of transition metal molybdates (MxMoO4, M = Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO2 hydrogenation. Catal Lett 145(7):1365–1373. CrossRefGoogle Scholar
  153. Yin G, Yuan X, Du X, Zhao W, Bi Q, Huang F (2018) Efficient reduction of CO2 to CO using cobalt–cobalt oxide core–shell catalysts. Chem Eur J 24(9):2157–2163. CrossRefGoogle Scholar
  154. Yu KP, Yu WY, Kuo MC, Liou YC, Chien SH (2008) Pt/titania-nanotube: a potential catalyst for CO2 adsorption and hydrogenation. Appl Catal B Environ 84(1–2):112–118. CrossRefGoogle Scholar
  155. Zhang QH, Han WD, Hong YJ, Yu JG (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148(3–4):335–340. CrossRefGoogle Scholar
  156. Zhang Q, Zuo Y-Z, Han M-H, Wang J-F, Jin Y, Wei F (2010) Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether. Catal Today 50(1–2):55–60. CrossRefGoogle Scholar
  157. Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480. CrossRefGoogle Scholar
  158. Zhang J, An B, Hong Y, Meng Y, Hu X, Wang C, Lin J, Lin W, Wang Y (2017a) Pyrolysis of metal–organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation. Mater Chem Front 1:2405–2409. CrossRefGoogle Scholar
  159. Zhang X, Zhu X, Lin L, Yao S, Zhang M, Liu X, Wang X, Li Y, Shi C, Ma D (2017b) Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catal 7(1):912–918. CrossRefGoogle Scholar
  160. Zhu X, Qu X, Li X, Liu J, Liu J, Zhu B, Shi C (2016) Selective reduction of carbon dioxide to carbon monoxide over Au/CeO2 catalyst and identification of reaction intermediate. Chin J Catal 37(12):2053–2058. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manuel Romero-Sáez
    • 1
    Email author
  • Leyla Y. Jaramillo
    • 1
    • 2
  • Wilson Henao
    • 1
  • Unai de la Torre
    • 3
  1. 1.Quality, Metrology and Production Research GroupInstituto Tecnológico Metropolitano, Campus RobledoMedellínColombia
  2. 2.Facultad de IngenieríaTecnológico de AntioquiaMedellínColombia
  3. 3.Department of Chemical Engineering, Faculty of Science and TechnologyUniversidad del País Vasco-UPV/EHULeioaSpain

Personalised recommendations