Advertisement

Nanostructured Materials for Li-Ion Battery Applications

  • Pushpendra Kumar
  • Pravin K. Dwivedi
  • Poonam Yadav
  • Manjusha V. ShelkeEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 23)

Abstract

As a consequence to the remarkable development of the science and technology, an exponential demand for energy leads to the exploitation of nonrenewable energy sources including fossil fuel paves the way to stern environmental crises. Global warming is one of the principal threats, due to the accumulation of greenhouse gases, resulting from the use of fossil fuels. Because of limited availability, the fossil fuels have been rapidly exhausting, compelling researchers to accelerate the search for environment-friendly, renewable, and sustainable energy sources like the solar cell, wind, and electrochemical energy storage systems. Electrochemical energy storage systems (EESs), more specifically rechargeable batteries and supercapacitors being efficient alternatives, have attracted tremendous attention. Rechargeable batteries not only serve as energy storage devices but also capable of providing the dispatchable energy for transportation, i.e., electrical vehicles (EVs and hybrid EVs).

Although LIBs possess energy densities higher than those of the conventional batteries, their lower power densities and poor cycling lives are critical challenges for their applications in electric vehicles (EVs) and grid-scale storage. The present book chapter is an attempt to provide a detailed description of several aspects of the development of Li-ion battery, i.e., preferred electrode (cathode as well as the anode) materials, separators, electrolyte media, and their additives with associated challenges. This chapter spotlights the mechanism for Li-ion storage (lithiation/delithiation processes) with various vital parameters that determine the overall performance of a battery including the shape and size of electrode materials. The recent advancement in designing several nanostructures for high-energy electrodes are highlighted in detail.

Keywords

Alternative energy source Rechargeable Li-ion battery Current collector Anode Cathode Electrolyte Separator Nanostructure 

Notes

Acknowledgments

We acknowledge the Department of Science & Technology-Science, Engineering Research Board (DST-SERB) and the Council of Scientific & Industrial Research (CSIR), New Delhi, India, for providing financial support.

References

  1. Abe K, Yoshitake H, Kitakura T, Hattori T, Wang H, Yoshio M (2004) Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochim Acta 49(26):4613–4622.  https://doi.org/10.1016/j.electacta.2004.05.016 CrossRefGoogle Scholar
  2. Agubra VA, Fergus JW (2014) The formation and stability of the solid electrolyte interface on the graphite anode. J Power Sources 268:153–162.  https://doi.org/10.1016/j.jpowsour.2014.06.024 CrossRefGoogle Scholar
  3. Akira Y (2012) The birth of the lithium-ion battery. Angew Chem Int Ed 51(24):5798–5800.  https://doi.org/10.1002/anie.201105006 CrossRefGoogle Scholar
  4. Antolini E (2004) LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 170(3):159–171.  https://doi.org/10.1016/j.ssi.2004.04.003 CrossRefGoogle Scholar
  5. Anton T, Ravi K, Chunzeng L, Stephen M, Xingcheng X, Sheldon WB (2016) Control and optimization of the electrochemical and mechanical properties of the solid electrolyte interphase on silicon electrodes in Lithium ion batteries. Adv Energy Mater 6(8):1502302.  https://doi.org/10.1002/aenm.201502302 CrossRefGoogle Scholar
  6. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366.  https://doi.org/10.1038/nmat1368 CrossRefGoogle Scholar
  7. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652.  https://doi.org/10.1038/451652 CrossRefGoogle Scholar
  8. Armstrong G, Armstrong AR, Bruce PG, Reale P, Scrosati B (2006) TiO2(B) nanowires as an improved anode material for Lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv Mater 18(19):2597–2600.  https://doi.org/10.1002/adma.200601232 CrossRefGoogle Scholar
  9. Arora P, Zhang Z(J) (2004) Battery separators. Chem Rev 104(10):4419–4462.  https://doi.org/10.1021/cr020738u CrossRefGoogle Scholar
  10. Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540.  https://doi.org/10.1007/s11581-016-1908-6 CrossRefGoogle Scholar
  11. Augustin S, Hennige V, Hörpel G, Hying C (2002) Ceramic but flexible: new ceramic membrane foils for fuel cells and batteries. Desalination 146(1):23–28.  https://doi.org/10.1016/S0011-9164(02)00465-4 CrossRefGoogle Scholar
  12. Aurbach D (1989) The electrochemical behavior of lithium salt solutions of γ-butyrolactone with noble metal electrodes. J Electrochem Soc 136(4):906–913.  https://doi.org/10.1149/1.2096876 CrossRefGoogle Scholar
  13. Aurbach D, Levi MD, Gamulski K, Markovsky B, Salitra G, Levi E, Oesten R (1999) Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques. J Power Sources 81–82:472–479.  https://doi.org/10.1016/S0378-7753(99)00204-9 CrossRefGoogle Scholar
  14. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim Acta 47(9):1423–1439.  https://doi.org/10.1016/S0013-4686(01)00858-1 CrossRefGoogle Scholar
  15. Aurbach D, Suresh GS, Levi E, Mitelman A, Mizrahi O, Chusid O, Brunelli M (2007) Progress in rechargeable magnesium battery technology. Adv Mater 19(23):4260–4267.  https://doi.org/10.1002/adma.200701495 CrossRefGoogle Scholar
  16. Banerjee J, Dutta K (2016) Materials for electrodes of Li-ion batteries: issues related to stress development. Crit Rev Solid State Mater Sci 42:218–238CrossRefGoogle Scholar
  17. Bao W, Zhang Z, Gan Y, Wang X, Lia J (2013) Enhanced cyclability of sulfur cathodes in lithium-sulfur batteries with Na-alginate as a binder. J Energy Chem 22(5):790–794.  https://doi.org/10.1016/S2095-4956(13)60105-9 CrossRefGoogle Scholar
  18. Behera SK (2011) Enhanced rate performance and cyclic stability of Fe3O4-graphene nanocomposites for li ion battery anodes. Chem Commun 47(37):10371–10373.  https://doi.org/10.1039/C1CC13218K CrossRefGoogle Scholar
  19. Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 11(1):91–95.  https://doi.org/10.1016/0167-2738(83)90068-1 CrossRefGoogle Scholar
  20. Biao Z, Matei GC, Christel L, Cathie V, Jean-Marie T (2015) Correlation between microstructure and Na storage behavior in hard carbon. Adv Energy Mater 6(1):1501588.  https://doi.org/10.1002/aenm.201501588 CrossRefGoogle Scholar
  21. Bindumadhavan K, Srivastava SK, Mahanty S (2013) MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. Chem Commun 49(18):1823–1825.  https://doi.org/10.1039/C3CC38598A CrossRefGoogle Scholar
  22. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217):1246501.  https://doi.org/10.1126/science.1246501 CrossRefGoogle Scholar
  23. Borghols WJH, Wagemaker M, Lafont U, Kelder EM, Mulder FM (2009) Size effects in the Li4+xTi5O12 spinel. J Am Chem Soc 131(49):17786–17792.  https://doi.org/10.1021/ja902423e
  24. Bottone SR (2010) Galvanic batteries, their theory, construction and use, comprising primary, single and double fluid cells. Secondary and gas batteries. Nabu Press, CharlestonGoogle Scholar
  25. Bron P, Johansson S, Zick K, Schmedt auf der Günne J, Dehnen S, Roling B (2013) Li10SnP2S12: an affordable Lithium superionic conductor. J Am Chem Soc 135(42):15694–15697.  https://doi.org/10.1021/ja407393y CrossRefGoogle Scholar
  26. Bruce PG, Scrosati B, Tarascon J‐M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946.  https://doi.org/10.1002/anie.200702505 CrossRefGoogle Scholar
  27. Cao Z, Xu P, Zhai H, Du S, Mandal J, Dontigny M, Zabhib K, Yang Y (2016) Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density. Nano Lett 16(11):7235–7240.  https://doi.org/10.1021/acs.nanolett.6b03655 CrossRefGoogle Scholar
  28. Capiglia C, Yang J, Imanishi N, Hirano A, Takeda Y, Yamamoto O (2002) Composite polymer electrolyte: the role of filler grain size. Solid State Ionics 154–155:7–14.  https://doi.org/10.1016/S0167-2738(02)00448-4 CrossRefGoogle Scholar
  29. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2007) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31.  https://doi.org/10.1038/nnano.2007.411 CrossRefGoogle Scholar
  30. Chen J, Asano M, Yamaki T, Yoshida M (2006) Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films. J Membr Sci 269(1):194–204.  https://doi.org/10.1016/j.memsci.2005.06.035 CrossRefGoogle Scholar
  31. Chen JS, Li CM, Zhou WW, Yan QY, Archer LA, Lou XW (2009) One-pot formation of SnO2 hollow nanospheres and [small alpha]-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale 1(2):280–285.  https://doi.org/10.1039/B9NR00102F CrossRefGoogle Scholar
  32. Chen L, Wang Z, He C, Zhao N, Shi C, Liu E, Li J (2013) Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries. ACS Appl Mater Interfaces 5(19):9537–9545.  https://doi.org/10.1021/am402368p CrossRefGoogle Scholar
  33. Chen W, Liu Y, Ma Y, Yang W (2015) Improved performance of lithium ion battery separator enabled by co-electrospinning polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135.  https://doi.org/10.1016/j.jpowsour.2014.10.026 CrossRefGoogle Scholar
  34. Cheng C, Fan HJ (2012) Branched nanowires: synthesis and energy applications. Nano Today 7(4):327–343.  https://doi.org/10.1016/j.nantod.2012.06.002 CrossRefGoogle Scholar
  35. Cheng F, Zhao J, Song W, Li C, Ma H, Chen J, Shen P (2006) Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg Chem 45(5):2038–2044.  https://doi.org/10.1021/ic051715b CrossRefGoogle Scholar
  36. Cheng F, Tao Z, Liang J, Chen J (2008) Template-directed materials for rechargeable Lithium-ion batteries. Chem Mater 20(3):667–681.  https://doi.org/10.1021/cm702091q CrossRefGoogle Scholar
  37. Cho T-H, Tanaka M, Ohnishi H, Kondo Y, Yoshikazu M, Nakamura T, Sakai T (2010) Composite nonwoven separator for lithium-ion battery: development and characterization. J Power Sources 195(13):4272–4277.  https://doi.org/10.1016/j.jpowsour.2010.01.018 CrossRefGoogle Scholar
  38. Choi J, Jin J, Jung IG, Kim JM, Kim HJ, Son SU (2011) SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries. Chem Commun 47(18):5241–5243.  https://doi.org/10.1039/C1CC10317B CrossRefGoogle Scholar
  39. Chou S-L, Wang J-Z, Choucair M, Liu H-K, Stride JA, Dou S-X (2010) Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem Commun 12(2):303–306.  https://doi.org/10.1016/j.elecom.2009.12.024 CrossRefGoogle Scholar
  40. Chung S-Y, Bloking JT, Chiang Y-M (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123.  https://doi.org/10.1038/nmat732 CrossRefGoogle Scholar
  41. Croguennec L, Palacin MR (2015) Recent achievements on inorganic electrode materials for Lithium-ion batteries. J Am Chem Soc 137(9):3140–3156.  https://doi.org/10.1021/ja507828x CrossRefGoogle Scholar
  42. Cui Y, Chai J, Du H, Duan Y, Xie G, Liu Z, Cui G (2017) Facile and reliable in situ polymerization of poly(ethyl cyanoacrylate)-based polymer electrolytes toward flexible lithium batteries. ACS Appl Mater Interfaces 9(10):8737–8741.  https://doi.org/10.1021/acsami.6b16218 CrossRefGoogle Scholar
  43. Czyżyk MT, Potze R, Sawatzky GA (1992) Band-theory description of high-energy spectroscopy and the electronic structure of $\mathrm{{ LiCoO}}_{2}$. Phys Rev B 46(7):3729–3735.  https://doi.org/10.1103/PhysRevB.46.3729
  44. Dahn JR, von Sacken U, Michal CA (1990) Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics 44(1):87–97.  https://doi.org/10.1016/0167-2738(90)90049-W CrossRefGoogle Scholar
  45. Daniel C, Mohanty D, Li J, Wood DL (2014) AIP Conference Proceedings 1597:26.  https://doi.org/10.1063/1.4878478 CrossRefGoogle Scholar
  46. Demir-Cakan R, Hu Y-S, Antonietti M, Maier J, Titirici M-M (2008) Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem Mater 20(4):1227–1229.  https://doi.org/10.1021/cm7031288 CrossRefGoogle Scholar
  47. Ding YL, Zhao X-B, Xie J, Cao G-S, Zhu TJ, Yu HM, Sun CY (2011a) Double-shelled hollow microspheres of LiMn2O4 for high-performance lithium-ion batteries. J Mater Chem 21(26):9475–9479.  https://doi.org/10.1039/C1JM10924C CrossRefGoogle Scholar
  48. Ding S, Chen JS, Qi G, Duan X, Wang Z, Giannelis EP, Lou XW (2011b) Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors. J Am Chem Soc 133(1):21–23.  https://doi.org/10.1021/ja108720w CrossRefGoogle Scholar
  49. Du Pasquier A, Warren PC, Culver D, Gozdz AS, Amatucci GG, Tarascon JM (2000) Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process. Solid State Ionics 135(1):249–257.  https://doi.org/10.1016/S0167-2738(00)00371-4 CrossRefGoogle Scholar
  50. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928 LP-–935.  https://doi.org/10.1126/science.1212741 CrossRefGoogle Scholar
  51. Ehrlich GM (2002) Chapter 35. In: Linden D, Reddy TB (eds) Handbook of batteries. McGraw-Hill, New York, pp 35.31–35.94Google Scholar
  52. Ellis BL, Philippe K, Thierry D (2014) Three-dimensional self-supported metal oxides for advanced energy storage. Adv Mater 26(21):3368–3397.  https://doi.org/10.1002/adma.201306126 CrossRefGoogle Scholar
  53. Eom JY, Kwon HS, Liu J, Zhou O (2004) Lithium insertion into purified and etched multi-walled carbon nanotubes synthesized on supported catalysts by thermal CVD. Carbon 42(12):2589–2596.  https://doi.org/10.1016/j.carbon.2004.05.039 CrossRefGoogle Scholar
  54. Eom J, Kim D, Kwon H (2006) Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition. J Power Sources 157(1):507–514.  https://doi.org/10.1016/j.jpowsour.2005.08.024 CrossRefGoogle Scholar
  55. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262.  https://doi.org/10.1039/C1EE01598B CrossRefGoogle Scholar
  56. Feng Z, Limin Q (2016) Recent progress in self-supported metal oxide nanoarray electrodes for advanced Lithium-ion batteries. Adv Sci 3(9):1600049.  https://doi.org/10.1002/advs.201600049 CrossRefGoogle Scholar
  57. Ferg E, Gummow RJ, de Kock A, Thackeray MM (1994) Spinel anodes for lithium-ion batteries. J Electrochem Soc 141(11):L147–L150.  https://doi.org/10.1149/1.2059324 CrossRefGoogle Scholar
  58. Finegan DP, Scheel M, Robinson JB, Tjaden B, Hunt I, Mason TJ et al (2015) In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat Commun 6:6924.  https://doi.org/10.1038/ncomms7924 CrossRefGoogle Scholar
  59. Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Electrochemical storage of lithium in multiwalled carbon nanotubes. Carbon 37(1):61–69.  https://doi.org/10.1016/S0008-6223(98)00187-0 CrossRefGoogle Scholar
  60. Fuller CS, Severiens JC (1954) Mobility of impurity ions in germanium and silicon. Phys Rev 96(1):21–24.  https://doi.org/10.1103/PhysRev.96.21 CrossRefGoogle Scholar
  61. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Iijima S (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5:987.  https://doi.org/10.1038/nmat1782 CrossRefGoogle Scholar
  62. Gallagher K, Croy J, Balasubramanian M, Bettge M, Abraham DK, Burrell A, Thackeray M (2013) Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes. Electrochem Commun 33:96–98.  https://doi.org/10.1016/j.elecom.2013.04.022 CrossRefGoogle Scholar
  63. Gao B, Bower C, Lorentzen JD, Fleming L, Kleinhammes A, Tang XP, Zhou O (2000) Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem Phys Lett 327(1):69–75.  https://doi.org/10.1016/S0009-2614(00)00851-4 CrossRefGoogle Scholar
  64. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183. https://doi.org/10.1038/nmat1849
  65. Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S et al (2008) Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat Mater 7:741.  https://doi.org/10.1038/nmat2245 CrossRefGoogle Scholar
  66. Goodenough JB (2013) Evolution of strategies for modern rechargeable batteries. Acc Chem Res 46(5):1053–1061.  https://doi.org/10.1021/ar2002705 CrossRefGoogle Scholar
  67. Goodenough JB, Kim Y (2010) Challenges for rechargeable li batteries. Chem Mater 22(3):587–603.  https://doi.org/10.1021/cm901452z CrossRefGoogle Scholar
  68. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176.  https://doi.org/10.1021/ja3091438 CrossRefGoogle Scholar
  69. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443.  https://doi.org/10.1016/j.jpowsour.2013.11.103 CrossRefGoogle Scholar
  70. Grünebaum M, Hiller MM, Jankowsky S, Jeschke S, Pohl B, Schürmann T et al (2014) Synthesis and electrochemistry of polymer based electrolytes for lithium batteries. Prog Solid State Chem 42(4):85–105.  https://doi.org/10.1016/j.progsolidstchem.2014.04.004 CrossRefGoogle Scholar
  71. Gu M, Zhang J, Xia Y, Wang X (2007) Poly(vinylidene fluoride) crystallization behavior and membrane structure formation via thermally induced phase separation with benzophenone diluent. J Macromol Sci B 47(1):180–191.  https://doi.org/10.1080/00222340701748628 CrossRefGoogle Scholar
  72. Gummow RJ, de Kock A, Thackeray MM (1994) Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics 69(1):59–67.  https://doi.org/10.1016/0167-2738(94)90450-2 CrossRefGoogle Scholar
  73. Guo Y-G, Hu Y-S, Sigle W, Maier J (2007) Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks. Adv Mater 19(16):2087–2091.  https://doi.org/10.1002/adma.200602828 CrossRefGoogle Scholar
  74. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887.  https://doi.org/10.1002/adma.200800627 CrossRefGoogle Scholar
  75. Guo P, Song H, Chen X (2009) Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem Commun 11(6):1320–1324.  https://doi.org/10.1016/j.elecom.2009.04.036 CrossRefGoogle Scholar
  76. Guo J, Sun A, Wang C (2010) A porous silicon–carbon anode with high overall capacity on carbon fiber current collector. Electrochem Commun 12(7):981–984.  https://doi.org/10.1016/j.elecom.2010.05.006 CrossRefGoogle Scholar
  77. Han MH, Gonzalo E, Singh G, Rojo T (2015) A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci 8(1):81–102.  https://doi.org/10.1039/C4EE03192J CrossRefGoogle Scholar
  78. Hao S, Xuemei F, Songlin X, Yishu J, Huisheng P (2016) Electrochemical capacitors with high output voltages that mimic electric eels. Adv Mater 28(10):2070–2076.  https://doi.org/10.1002/adma.201505742 CrossRefGoogle Scholar
  79. Haregewoin AM, Wotango AS, Hwang B-J (2016) Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ Sci 9(6):1955–1988.  https://doi.org/10.1039/C6EE00123H CrossRefGoogle Scholar
  80. Hassoun J, Reale P, Scrosati B (2007) Recent advances in liquid and polymer lithium-ion batteries. J Mater Chem 17(35):3668–3677.  https://doi.org/10.1039/B707040N CrossRefGoogle Scholar
  81. He M, Yuan L-X, Zhang W-X, Hu X-L, Huang Y-H (2011) Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J Phys Chem C 115(31):15703–15709.  https://doi.org/10.1021/jp2043416 CrossRefGoogle Scholar
  82. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147.  https://doi.org/10.1038/nmat1063 CrossRefGoogle Scholar
  83. Higgins TM, Park S-H, King PJ, Zhang CJ, McEvoy N, Berner NC et al (2016) A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10(3):3702–3713.  https://doi.org/10.1021/acsnano.6b00218 CrossRefGoogle Scholar
  84. Holtstiege F, Schmuch R, Winter M, Brunklaus G, Placke T (2018) New insights into the pre-lithiation kinetics of graphite anodes via nuclear magnetic resonance spectroscopy. J Power Sources 378:522–526.  https://doi.org/10.1016/j.jpowsour.2017.12.069 CrossRefGoogle Scholar
  85. Hongcai G, Bingkun G, Jie S, Kyusung P, Goodenough JB (2015) A composite gel–polymer/glass–fiber electrolyte for sodium-ion batteries. Adv Energy Mater 5(9):1402235.  https://doi.org/10.1002/aenm.201402235 CrossRefGoogle Scholar
  86. Hongsen L, Laifa S, Jie W, Bing D, Ping N, Guiyin X, Xiaogang Z (2013) Design of a nitrogen-doped, carbon-coated Li4Ti5O12 nanocomposite with a core–shell structure and its application for high-rate lithium-ion batteries. ChemPlusChem 79(1):128–133.  https://doi.org/10.1002/cplu.201300316 CrossRefGoogle Scholar
  87. Hori S, Suzuki K, Hirayama M, Kato Y, Saito T, Yonemura M, Kanno R (2014) Synthesis, structure, and ionic conductivity of solid solution, Li10+[small delta]M1+[small delta]P2-[small delta]S12 (M = Si, Sn). Faraday Discuss 176(0):83–94.  https://doi.org/10.1039/C4FD00143E CrossRefGoogle Scholar
  88. Hosono E, Kudo T, Honma I, Matsuda H, Zhou H (2009) Synthesis of single-crystalline spinel LiMn2O4 nanowires for a lithium-ion battery with high power density. Nano Lett 9(3):1045–1051.  https://doi.org/10.1021/nl803394v CrossRefGoogle Scholar
  89. Hu Y, Kong W, Li H, Huang X, Chen L (2004) Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries. Electrochem Commun 6(2):126–131.  https://doi.org/10.1016/j.elecom.2003.10.024 CrossRefGoogle Scholar
  90. Hu Y-S, Kinley L, Guo Y-G, Maier J (2006) High lithium electro activity of nanometer-sized rutile TiO2. Adv Mater 18(11):1421–1426.  https://doi.org/10.1002/adma.200502723 CrossRefGoogle Scholar
  91. Hu L, Zhang Z, Amine K (2013) Fluorinated electrolytes for Li-ion battery: an FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochem Commun 35:76–79.  https://doi.org/10.1016/j.elecom.2013.08.009 CrossRefGoogle Scholar
  92. Hu J, Tian J, Li C (2017) Nanostructured carbon nitride polymer-reinforced electrolyte to enable dendrite-suppressed lithium metal batteries. ACS Appl Mater Interfaces 9(13):11615–11625.  https://doi.org/10.1021/acsami.7b00478 CrossRefGoogle Scholar
  93. Huang X, Hitt J (2013) Lithium ion battery separators: development and performance characterization of a composite membrane. J Membr Sci 425–426:163–168.  https://doi.org/10.1016/j.memsci.2012.09.027 CrossRefGoogle Scholar
  94. Huang P, Wang Q, Li K, Ping P, Sun J (2015) The combustion behavior of large scale lithium titanate battery. Sci Rep 5:7788.  https://doi.org/10.1038/srep07788 CrossRefGoogle Scholar
  95. Hui Y, Zhiyuan L, Chandran BK, Jiyang D, Jiancan Y, Dianpeng Q et al (2015) Self-protection of electrochemical storage devices via a thermal reversible sol–gel transition. Adv Mater 27(37):5593–5598.  https://doi.org/10.1002/adma.201502484 CrossRefGoogle Scholar
  96. Huie MM, Bock DC, Takeuchi ES, Marschilok AC, Takeuchi KJ (2015) Cathode materials for magnesium and magnesium-ion based batteries. Coord Chem Rev 287:15–27.  https://doi.org/10.1016/j.ccr.2014.11.005 CrossRefGoogle Scholar
  97. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276(5317):1395 LP-–1397.  https://doi.org/10.1126/science.276.5317.1395 CrossRefGoogle Scholar
  98. Irene O, de Henrik V, Bruno S, Stefano P (2016) Ionic-liquid-based polymer electrolytes for battery applications. Angew Chem Int Ed 55(2):500–513.  https://doi.org/10.1002/anie.201504971 CrossRefGoogle Scholar
  99. Islam MS, Fisher CAJ (2014) Chem Soc Rev 43:185–204CrossRefGoogle Scholar
  100. Itagaki M, Kobari N, Yotsuda S, Watanabe K, Kinoshita S, Ue M (2005) LiCoO2 electrode/electrolyte interface of Li-ion rechargeable batteries investigated by in situ electrochemical impedance spectroscopy. J Power Sources 148:78–84.  https://doi.org/10.1016/j.jpowsour.2005.02.007 CrossRefGoogle Scholar
  101. Itoh T, Miyamura Y, Ichikawa Y, Uno T, Kubo M, Yamamoto O (2003) Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer. J Power Sources 119–121:403–408.  https://doi.org/10.1016/S0378-7753(03)00261-1 CrossRefGoogle Scholar
  102. Jaiswal A, Horne CR, Chang O, Zhang W, Kong W, Wang E, Doeff MM (2009) Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-ion batteries. J Electrochem Soc 156(12):A1041–A1046.  https://doi.org/10.1149/1.3223987 CrossRefGoogle Scholar
  103. Jang J, Jeong S, Seo J, Kim M-C, Sim E, Oh Y, Cheon J (2011) Ultrathin zirconium disulfide nanodiscs. J Am Chem Soc 133(20):7636–7639.  https://doi.org/10.1021/ja200400n CrossRefGoogle Scholar
  104. Jeong H-S, Kim D-W, Jeong YU, Lee S-Y (2010) Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. J Power Sources 195(18):6116–6121.  https://doi.org/10.1016/j.jpowsour.2009.10.085 CrossRefGoogle Scholar
  105. Jeong PM, Ilyoung C, Jaewan H, Onnuri K (2013) Polymer electrolytes integrated with ionic liquids for future electrochemical devices. J Appl Polym Sci 129(5):2363–2376.  https://doi.org/10.1002/app.39064 CrossRefGoogle Scholar
  106. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4(8):2682–2699.  https://doi.org/10.1039/C0EE00699H CrossRefGoogle Scholar
  107. Jian J, Yuanyuan L, Jinping L, Xintang H, Changzhou Y, Lou XW(D) (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24(38):5166–5180.  https://doi.org/10.1002/adma.201202146 CrossRefGoogle Scholar
  108. Jiang C, Hosono E, Zhou H (2006) Nanomaterials for lithium-ion batteries. Nano Today 1(4):28–33.  https://doi.org/10.1016/S1748-0132(06)70114-1 CrossRefGoogle Scholar
  109. Jiang J, Li Y, Liu J, Huang X (2011) Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale 3(1):45–58.  https://doi.org/10.1039/C0NR00472C CrossRefGoogle Scholar
  110. Jin J, Wen Z, Liang X, Cui Y, Wu X (2012) Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery. Solid State Ionics 225:604–607.  https://doi.org/10.1016/j.ssi.2012.03.012 CrossRefGoogle Scholar
  111. Jin K, Zhou X, Zhang L, Xin X, Wang G, Liu Z (2013) Sulfur/carbon nanotube composite film as a flexible cathode for Lithium–sulfur batteries. J Phys Chem C 117(41):21112–21119.  https://doi.org/10.1021/jp406757w CrossRefGoogle Scholar
  112. Jordi C, Laure M, Dominique L, Rosa PM (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):E170–E192.  https://doi.org/10.1002/adma.201000717 CrossRefGoogle Scholar
  113. Julian K, Gebresilassie EG, Dominic B, Stefano P (2015) Safer electrolytes for Lithium-ion batteries: state of the art and perspectives. ChemSusChem 8(13):2154–2175.  https://doi.org/10.1002/cssc.201500284 CrossRefGoogle Scholar
  114. Jun C, Zhan-Liang T, Suo-Long L (2003) Lithium intercalation in open-ended TiS2 nanotubes. Angew Chem Int Ed 42(19):2147–2151.  https://doi.org/10.1002/anie.200250573 CrossRefGoogle Scholar
  115. Kalyana Sundaram NT, Subramania A (2007) Nano-size LiAlO2 ceramic filler incorporated porous PVDF-co-HFP electrolyte for lithium-ion battery applications. Electrochim Acta 52(15):4987–4993.  https://doi.org/10.1016/j.electacta.2007.01.066 CrossRefGoogle Scholar
  116. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M et al (2011) A lithium superionic conductor. Nat Mater 10:682.  https://doi.org/10.1038/nmat3066 CrossRefGoogle Scholar
  117. Kartick B, Srivastava SK, Mahanty S (2013) TiS2–MWCNT hybrid as high performance anode in lithium-ion battery. J Nanopart Res 15(9):1950.  https://doi.org/10.1007/s11051-013-1950-5 CrossRefGoogle Scholar
  118. Kartick B, Srivastava SK, Mahanty S (2014) Tungsten disulfide-multiwalled carbon nanotube hybrid anode for lithium-ion battery. J Nanosci Nanotechnol 14(5):3758–3764.  https://doi.org/10.1166/jnn.2014.8737 CrossRefGoogle Scholar
  119. Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A et al (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030.  https://doi.org/10.1038/nenergy.2016.30 CrossRefGoogle Scholar
  120. Kelly JC, Degrood NL, Roberts ME (2015) Li-ion battery shut-off at high temperature caused by polymer phase separation in responsive electrolytes. Chem Commun 51(25):5448–5451.  https://doi.org/10.1039/C4CC10282G CrossRefGoogle Scholar
  121. Khatib R, Dalverny A-L, Saubanère M, Gaberscek M, Doublet M-L (2013) Origin of the voltage hysteresis in the CoP conversion material for Li-ion batteries. J Phys Chem C 117(2):837–849.  https://doi.org/10.1021/jp310366a CrossRefGoogle Scholar
  122. Kim H-S, Moon S-I (2005) Synthesis and electrochemical performances of di(trimethylolpropane) tetraacrylate-based gel polymer electrolyte. J Power Sources 146(1):584–588.  https://doi.org/10.1016/j.jpowsour.2005.03.148 CrossRefGoogle Scholar
  123. Kim H, Choi J, Sohn H, Kang T (1999) The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries. J Electrochem Soc 146(12):4401–4405.  https://doi.org/10.1149/1.1392650 CrossRefGoogle Scholar
  124. Kim S-S, Kadoma Y, Ikuta H, Uchimoto Y, Wakihara M (2001) Electrochemical performance of natural graphite by surface modification using aluminum. Electrochem Solid-State Lett 4(8):A109–A112.  https://doi.org/10.1149/1.1379829 CrossRefGoogle Scholar
  125. Kim J-W, Ji K-S, Lee J-P, Park J-W (2003) Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO2. J Power Sources 119–121:415–421.  https://doi.org/10.1016/S0378-7753(03)00263-5 CrossRefGoogle Scholar
  126. Kim KM, Park N-G, Ryu KS, Chang SH (2006) Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods. Electrochim Acta 51(26):5636–5644.  https://doi.org/10.1016/j.electacta.2006.02.038 CrossRefGoogle Scholar
  127. Kim Y-L, Sun Y-K, Lee S-M (2008) Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology. Electrochim Acta 53(13):4500–4504.  https://doi.org/10.1016/j.electacta.2008.01.050 CrossRefGoogle Scholar
  128. Kim Y-D, Kang J-G, Park J-G, Lee S, Kim D-W (2009) Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries. Nanotechnology 20(45):455701.  https://doi.org/10.1088/0957-4484/20/45/455701 CrossRefGoogle Scholar
  129. Klavetter KC, Pedro de Souza J, Heller A, Mullins CB (2015) High tap density microparticles of selenium-doped germanium as a high efficiency, stable cycling lithium-ion battery anode material. J Mater Chem A 3(11):5829–5834.  https://doi.org/10.1039/C5TA00319A CrossRefGoogle Scholar
  130. Koksbang R, Barker J, Shi H, Saïdi MY (1996) Cathode materials for lithium rocking chair batteries. Solid State Ionics 84(1):1–21.  https://doi.org/10.1016/S0167-2738(96)83001-3 CrossRefGoogle Scholar
  131. Kuhn A, Duppel V, Lotsch BV (2013) Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the li ion dynamics in LGPS li electrolytes. Energy Environ Sci 6(12):3548–3552.  https://doi.org/10.1039/C3EE41728J CrossRefGoogle Scholar
  132. Kumar P, Hu LH (2018) Mater Res Express 5(2018):075510CrossRefGoogle Scholar
  133. Kumar B, Scanlon LG (1994) Polymer-ceramic composite electrolytes. J Power Sources 52(2):261–268.  https://doi.org/10.1016/0378-7753(94)02147-3 CrossRefGoogle Scholar
  134. Kumar P, Ming J, Li. M, Wahyudi W, Li LJ (2016) ECS- J Solid State Sci Technol 2016 5:Q3021–Q3025CrossRefGoogle Scholar
  135. Kurc B (2014) Gel electrolytes based on poly(acrylonitrile)/sulfolane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries. Electrochim Acta 125:415–420.  https://doi.org/10.1016/j.electacta.2014.01.117 CrossRefGoogle Scholar
  136. Lacey MJ, Jeschull F, Edström K, Brandell D (2014a) Functional, water-soluble binders for improved capacity and stability of lithium–sulfur batteries. J Power Sources 264:8–14.  https://doi.org/10.1016/j.jpowsour.2014.04.090 CrossRefGoogle Scholar
  137. Lacey MJ, Jeschull F, Edström K, Brandell D (2014b) Porosity blocking in highly porous carbon black by PVdF binder and its implications for the li–S system. J Phys Chem C 118(45):25890–25898.  https://doi.org/10.1021/jp508137m CrossRefGoogle Scholar
  138. Lai H, Li J, Chen Z, Huang Z (2012) Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries. ACS Appl Mater Interfaces 4(5):2325–2328.  https://doi.org/10.1021/am300378w CrossRefGoogle Scholar
  139. Larcher D, Tarascon J-M (2014) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19.  https://doi.org/10.1038/nchem.2085 CrossRefGoogle Scholar
  140. Larcher D, Masquelier C, Bonnin D, Chabre Y, Masson V, Leriche J-B, Tarascon J-M (2003) Effect of particle size on lithium intercalation into α -Fe2O3. J Electrochem Soc 150(1):A133–A139.  https://doi.org/10.1149/1.1528941 CrossRefGoogle Scholar
  141. Lee KT, Jung YS, Oh SM (2003) Synthesis of tin-encapsulated spherical hollow carbon for anode material in Lithium secondary batteries. J Am Chem Soc 125(19):5652–5653.  https://doi.org/10.1021/ja0345524 CrossRefGoogle Scholar
  142. Lee S-Y, Ogawa A, Kanno M, Nakamoto H, Yasuda T, Watanabe M (2010) Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J Am Chem Soc 132(28):9764–9773.  https://doi.org/10.1021/ja102367x CrossRefGoogle Scholar
  143. Lee SW, McDowell MT, Choi JW, Cui Y (2011) Anomalous shape changes of silicon nanopillars by electrochemical Lithiation. Nano Lett 11(7):3034–3039.  https://doi.org/10.1021/nl201787r CrossRefGoogle Scholar
  144. Lei L, Raji AR, Tour JM (2013) Graphene-wrapped MnO2–graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv Mater 25(43):6298–6302.  https://doi.org/10.1002/adma.201302915 CrossRefGoogle Scholar
  145. Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110(1):1–10.  https://doi.org/10.1016/S0378-7753(01)01014-X CrossRefGoogle Scholar
  146. Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48(9):1201–1217.  https://doi.org/10.1039/C1CC14764A CrossRefGoogle Scholar
  147. Li Z, Su G, Wang X, Gao D (2005) Micro-porous P(VDF-HFP)-based polymer electrolyte filled with Al2O3 nanoparticles. Solid State Ionics 176(23):1903–1908.  https://doi.org/10.1016/j.ssi.2005.05.006 CrossRefGoogle Scholar
  148. Li Y, Tan B, Wu Y (2008a) Mesoporous Co3O4 nanowire arrays for Lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270.  https://doi.org/10.1021/nl0725906 CrossRefGoogle Scholar
  149. Li ZH, Zhang P, Zhang HP, Wu YP, Zhou XD (2008b) A lotus root-like porous nanocomposite polymer electrolyte. Electrochem Commun 10(5):791–794.  https://doi.org/10.1016/j.elecom.2008.02.036 CrossRefGoogle Scholar
  150. Li B, Cao H, Shao J, Qu M (2011) Enhanced anode performances of the Fe3O4-carbon-rGO three dimensional composite in lithium ion batteries. Chem Commun 47(37):10374–10376.  https://doi.org/10.1039/C1CC13462K CrossRefGoogle Scholar
  151. Li L, Meng F, Jin S (2012a) High-capacity Lithium-ion battery conversion cathodes based on Iron fluoride nanowires and insights into the conversion mechanism. Nano Lett 12(11):6030–6037.  https://doi.org/10.1021/nl303630p CrossRefGoogle Scholar
  152. Li L, Yu Y, Meng F, Tan Y, Hamers RJ, Jin S (2012b) Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. Nano Lett 12(2):724–731.  https://doi.org/10.1021/nl2036854
  153. Li X, Li D, Qiao L, Wang X, Sun X, Wang P, He D (2012c) Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes. J Mater Chem 22(18):9189–9194.  https://doi.org/10.1039/C2JM30604B CrossRefGoogle Scholar
  154. Li L, Jacobs R, Gao P, Gan L, Wang F, Morgan D, Jin S (2016) Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. J Am Chem Soc 138(8):2838–2848.  https://doi.org/10.1021/jacs.6b00061 CrossRefGoogle Scholar
  155. Lian P, Zhu X, Xiang H, Li Z, Yang W, Wang H (2010) Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56(2):834–840.  https://doi.org/10.1016/j.electacta.2010.09.086 CrossRefGoogle Scholar
  156. Liang Z, Lin D, Zhao J, Lu Z, Liu Y, Liu C, Cui Y (2016) Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci U S A 113(11):2862 LP-–2867.  https://doi.org/10.1073/pnas.1518188113 CrossRefGoogle Scholar
  157. Liao J-Y, Higgins D, Lui G, Chabot V, Xiao X, Chen Z (2013) Multifunctional TiO2–C/MnO2 Core–double-Shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Lett 13(11):5467–5473.  https://doi.org/10.1021/nl4030159 CrossRefGoogle Scholar
  158. Liaoyong W, Zhijie W, Yan M, Rui X, Shu-Hong Y, Yong L (2015) Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small 11(28):3408–3428.  https://doi.org/10.1002/smll.201500120 CrossRefGoogle Scholar
  159. Licht S, Douglas A, Ren J, Carter R, Lefler M, Pint CL (2016) Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes. ACS Cent Sci 2(3):162–168.  https://doi.org/10.1021/acscentsci.5b00400 CrossRefGoogle Scholar
  160. Limthongkul P, Jang Y-I, Dudney NJ, Chiang Y-M (2003) Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater 51(4):1103–1113.  https://doi.org/10.1016/S1359-6454(02)00514-1 CrossRefGoogle Scholar
  161. Lin M-C, Gong M, Lu B, Wu Y, Wang D-Y, Guan M, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520:324.  https://doi.org/10.1038/nature14340 CrossRefGoogle Scholar
  162. Lin D, Liu Y, Liang Z, Lee H-W, Sun J, Wang H, Cui Y (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 11:626.  https://doi.org/10.1038/nnano.2016.32 CrossRefGoogle Scholar
  163. Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194–206.  https://doi.org/10.1038/nnano.2017.16 CrossRefGoogle Scholar
  164. Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  165. Linlin L, Shengjie P, Yanling C, Peifen T, Jin W, Grace W, Madhavi S (2013) Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chem Eur J 19(19):5892–5898.  https://doi.org/10.1002/chem.201204153 CrossRefGoogle Scholar
  166. Liu Y, Cui Y (2017) Lithium Metal Anodes: Recipe Prot Joule 1:643–650.  https://doi.org/10.1016/j.joule.2017.12.001 CrossRefGoogle Scholar
  167. Liu Y, Lee JY, Hong L (2002) Functionalized SiO2 in poly(ethylene oxide)-based polymer electrolytes. J Power Sources 109(2):507–514.  https://doi.org/10.1016/S0378-7753(02)00167-2 CrossRefGoogle Scholar
  168. Liu Y, Lee JY, Hong L (2003) Morphology, crystallinity, and electrochemical properties of in situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J Appl Polym Sci 89(10):2815–2822.  https://doi.org/10.1002/app.12487 CrossRefGoogle Scholar
  169. Liu N, Hu L, McDowell MT, Jackson A, Cui Y (2011) Prelithiated silicon nanowires as an anode for lithium-ion batteries. ACS Nano 5(8):6487–6493.  https://doi.org/10.1021/nn2017167 CrossRefGoogle Scholar
  170. Liu H, Su D, Wang G, Qiao SZ (2012) An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. J Mater Chem 22(34):17437–17440. https://doi.org/10.1039/c2jm33992g
  171. Liu N, Li W, Pasta M, Cui Y (2014a) Nanomaterials for electrochemical energy storage. Front Phys 9(3):323–350.  https://doi.org/10.1007/s11467-013-0408-7 CrossRefGoogle Scholar
  172. Liu Y, Wang W, Huang H, Gu L, Wang Y, Peng X (2014b) The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries. Chem Commun 50(34):4485–4488CrossRefGoogle Scholar
  173. Liu C, Neale ZG, Cao G (2016a) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19(2):109–123.  https://doi.org/10.1016/j.mattod.2015.10.009 CrossRefGoogle Scholar
  174. Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y (2016b) Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun 7:10992.  https://doi.org/10.1038/ncomms10992 CrossRefGoogle Scholar
  175. Longwei Y, Zhiwei Z, Zhaoqiang L, Fengbin H, Qun L, Chengxiang W, Yongxin Q (2014) Spinel ZnMn2O4 nanocrystal-anchored 3D hierarchical carbon aerogel hybrids as anode materials for lithium ion batteries. Adv Funct Mater 24(26):4176–4185.  https://doi.org/10.1002/adfm.201400108 CrossRefGoogle Scholar
  176. Lou XW, Li CM, Archer LA (2009) Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 21(24):2536–2539.  https://doi.org/10.1002/adma.200803439 CrossRefGoogle Scholar
  177. Lowe M, Tokuoka S, Trigg T, Gereffi G (2010) Lithium-ion batteries for electric vehicles: the US value chain. Center on Globalization, Governance & Competitiveness Duke University, DurhamGoogle Scholar
  178. Lu W, Henry K, Turchi C, Pellegrino J (2008) Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc 155(5):A361–A367.  https://doi.org/10.1149/1.2869202 CrossRefGoogle Scholar
  179. Luo W, Schardt J, Bommier C, Wang B, Razink J, Simonsen J, Ji X (2013) Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J Mater Chem A 1(36):10662–10666.  https://doi.org/10.1039/C3TA12389H CrossRefGoogle Scholar
  180. Maekawa H, Matsuo M, Takamura H, Ando M, Noda Y, Karahashi T, Orimo S (2009) Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. J Am Chem Soc 131(3):894–895.  https://doi.org/10.1021/ja807392k CrossRefGoogle Scholar
  181. Magistris A, Mustarelli P, Quartarone E, Tomasi C (2000) Transport and thermal properties of (PEO)n–LiPF6 electrolytes for super-ambient applications. Solid State Ionics 136–137:1241–1247.  https://doi.org/10.1016/S0167-2738(00)00594-4 CrossRefGoogle Scholar
  182. Mai L, Tian X, Xu X, Chang L, Xu L (2014) Nanowire electrodes for electrochemical energy storage devices. Chem Rev 114(23):11828–11862.  https://doi.org/10.1021/cr500177a CrossRefGoogle Scholar
  183. Manuel Stephan A, Teeters D (2003) Characterization of PVdF-HFP polymer membranes prepared by phase inversion techniques I. morphology and charge–discharge studies. Electrochim Acta 48(14):2143–2148.  https://doi.org/10.1016/S0013-4686(03)00197-X CrossRefGoogle Scholar
  184. Marcinek M, Syzdek J, Marczewski M, Piszcz M, Niedzicki L, Kalita M et al (2015) Electrolytes for Li-ion transport – review. Solid State Ionics 276:107–126.  https://doi.org/10.1016/j.ssi.2015.02.006 CrossRefGoogle Scholar
  185. Martin W, Besenhard JO, Spahr ME, Petr N (1999) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763.  https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725:AID-ADMA725>3.0.CO;2-Z CrossRefGoogle Scholar
  186. Matsuo M, Nakamori Y, Orimo S, Maekawa H, Takamura H (2007) Lithium superionic conduction in lithium borohydride accompanied by structural transition. Appl Phys Lett 91(22):224103.  https://doi.org/10.1063/1.2817934 CrossRefGoogle Scholar
  187. Matsuo M, Remhof A, Martelli P, Caputo R, Ernst M, Miura Y et al (2009) Complex hydrides with (BH4)− and (NH2)− anions as new lithium fast-ion conductors. J Am Chem Soc 131(45):16389–16391.  https://doi.org/10.1021/ja907249p CrossRefGoogle Scholar
  188. Mei L, Li C, Qu B, Zhang M, Xu C, Lei D, Wang T (2012) Small quantities of cobalt deposited on tin oxide as anode material to improve performance of lithium-ion batteries. Nanoscale 4(18):5731–5737.  https://doi.org/10.1039/C2NR31307C CrossRefGoogle Scholar
  189. Meyer WH (1999) Polymer electrolytes for lithium-ion batteries. Adv Mater 10(6):439–448.  https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<439:AID-ADMA439>3.0.CO;2-I CrossRefGoogle Scholar
  190. Michel A (2004) Polymers with ionic conductivity. Adv Mater 2(6–7):278–286.  https://doi.org/10.1002/adma.19900020603 CrossRefGoogle Scholar
  191. Minsub O, Sekwon N, Chang-Su W, Jun-Ho J, Sung-Soo K, Alicja B et al (2015) Observation of electrochemically driven elemental segregation in a Si alloy thin-film anode and its effects on cyclic stability for Li-ion batteries. Adv Energy Mater 5(22):1501136.  https://doi.org/10.1002/aenm.201501136 CrossRefGoogle Scholar
  192. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0<x<−1): a new cathode material for batteries of high energy density. Mater Res Bull 15(6):783–789.  https://doi.org/10.1016/0025-5408(80)90012-4 CrossRefGoogle Scholar
  193. Mo Y, Ong SP, Ceder G (2012) First principles study of the Li10GeP2S12 Lithium super ionic conductor material. Chem Mater 24(1):15–17.  https://doi.org/10.1021/cm203303y CrossRefGoogle Scholar
  194. Mohamed NS, Arof AK (2004) Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes. J Power Sources 132(1):229–234.  https://doi.org/10.1016/j.jpowsour.2003.12.031 CrossRefGoogle Scholar
  195. Mohtadi R, Orimo S (2016) The renaissance of hydrides as energy materials. Nat Rev Mater 2:16091.  https://doi.org/10.1038/natrevmats.2016.91 CrossRefGoogle Scholar
  196. Mohtadi R, Remhof A, Jena P (2016) Complex metal borohydrides: multifunctional materials for energy storage and conversion. J Phys Condens Matter 28(35):353001.  https://doi.org/10.1088/0953-8984/28/35/353001 CrossRefGoogle Scholar
  197. Mukhopadhyay A, Jangid MK (2018) Li metal battery, healthy self. Science 359:1463CrossRefGoogle Scholar
  198. Myung S-T, Hitoshi Y, Sun Y-K (2011) Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J Mater Chem 21(27):9891–9911.  https://doi.org/10.1039/C0JM04353B CrossRefGoogle Scholar
  199. Nazri GA, Pistoia P (2003) Lithium batteries: science and technology. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  200. Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100(1):101–106.  https://doi.org/10.1016/S0378-7753(01)00887-4 CrossRefGoogle Scholar
  201. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264.  https://doi.org/10.1016/j.mattod.2014.10.040 CrossRefGoogle Scholar
  202. Nobili F, Dsoke S, Mancini M, Marassi R (2009) Interfacial properties of copper-coated graphite electrodes: coating thickness dependence. Fuel Cells 9(3):264–268.  https://doi.org/10.1002/fuce.200800087 CrossRefGoogle Scholar
  203. Noel M, Suryanarayanan V (2002) Role of carbon host lattices in Li-ion intercalation/de-intercalation processes. J Power Sources 111(2):193–209.  https://doi.org/10.1016/S0378-7753(02)00308-7 CrossRefGoogle Scholar
  204. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666 LP-–669.  https://doi.org/10.1126/science.1102896 CrossRefGoogle Scholar
  205. Obrovac MN, Chevrier VL (2014) Alloy negative electrodes for Li-ion batteries. Chem Rev 114(23):11444–11502.  https://doi.org/10.1021/cr500207g CrossRefGoogle Scholar
  206. Oh SM, Myung ST, Park JB, Scrosati B, Amine K, Sun YK (2012) Angew Chem Int Ed 51(8):1853–1856.  https://doi.org/10.1002/anie.201107394 CrossRefGoogle Scholar
  207. Ohzuku T, Makimura Y (2001a) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30(7):642–643.  https://doi.org/10.1246/cl.2001.642 CrossRefGoogle Scholar
  208. Ohzuku T, Makimura Y (2001b) Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem Lett 30(8):744–745.  https://doi.org/10.1246/cl.2001.744 CrossRefGoogle Scholar
  209. Owen JR (1997) Rechargeable lithium batteries. Chem Soc Rev 26(4):259–267.  https://doi.org/10.1039/CS9972600259 CrossRefGoogle Scholar
  210. Palacin MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38(9):2565–2575.  https://doi.org/10.1039/B820555H CrossRefGoogle Scholar
  211. Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z (2009) Li storage properties of disordered graphene nanosheets. Chem Mater 21(14):3136–3142.  https://doi.org/10.1021/cm900395k CrossRefGoogle Scholar
  212. Park JK (2012) Principles and applications of lithium secondary batteries. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  213. Park K-S, Benayad A, Kang D-J, Doo S-G (2008) Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J Am Chem Soc 130(45):14930–14931.  https://doi.org/10.1021/ja806104n CrossRefGoogle Scholar
  214. Peng C, Chen B, Qin Y, Yang S, Li C, Zuo Y, Yang J (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6(2):1074–1081.  https://doi.org/10.1021/nn202888d CrossRefGoogle Scholar
  215. Persson K, Sethuraman VA, Hardwick LJ, Hinuma Y, Meng YS, van der Ven A, Ceder G (2010) Lithium diffusion in graphitic carbon. J Phys Chem Lett 1(8):1176–1180.  https://doi.org/10.1021/jz100188d CrossRefGoogle Scholar
  216. Pharr M, Choi YS, Lee D, Oh KH, Vlassak JJ (2016) Measurements of stress and fracture in germanium electrodes of lithium-ion batteries during electrochemical lithiation and delithiation. J Power Sources 304:164–169.  https://doi.org/10.1016/j.jpowsour.2015.11.036 CrossRefGoogle Scholar
  217. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J-M (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496.  https://doi.org/10.1038/35035045 CrossRefGoogle Scholar
  218. Porcarelli L, Gerbaldi C, Bella F, Nair JR (2016) Super soft all-ethylene oxide polymer electrolyte for safe all-solid Lithium batteries. Sci Rep 6:19892. Retrieved from.  https://doi.org/10.1038/srep19892 CrossRefGoogle Scholar
  219. Prosini PP, Villano P, Carewska M (2002) A novel intrinsically porous separator for self-standing lithium-ion batteries. Electrochim Acta 48(3):227–233.  https://doi.org/10.1016/S0013-4686(02)00601-1 CrossRefGoogle Scholar
  220. Pu W, He X, Wang L, Jiang C, Wan C (2006) Preparation of PVDF–HFP microporous membrane for Li-ion batteries by phase inversion. J Membr Sci 272(1):11–14.  https://doi.org/10.1016/j.memsci.2005.12.038 CrossRefGoogle Scholar
  221. Qiao J, Fu J, Lin R, Ma J, Liu J (2010) Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability. Polymer 51(21):4850–4859.  https://doi.org/10.1016/j.polymer.2010.08.018 CrossRefGoogle Scholar
  222. Qingwen L, Yan-Bing H, Qipeng Y, Baohua L, Valentino KY, Youwei Y et al (2017) Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater 29(13):1604460.  https://doi.org/10.1002/adma.201604460 CrossRefGoogle Scholar
  223. Ran E, Gregory S, Arnd G, Alexander P, Doron A (2011) Sulfur-impregnated activated carbon Fiber cloth as a binder-free cathode for rechargeable li-S batteries. Adv Mater 23(47):5641–5644.  https://doi.org/10.1002/adma.201103274 CrossRefGoogle Scholar
  224. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for li ion batteries. Chem Rev 113(7):5364–5457.  https://doi.org/10.1021/cr3001884 CrossRefGoogle Scholar
  225. Roberts AD, Li X, Zhang H (2014) Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev 43(13):4341–4356.  https://doi.org/10.1039/C4CS00071D CrossRefGoogle Scholar
  226. Rowsell JLC, Pralong V, Nazar LF (2001) Layered lithium Iron nitride: a promising anode material for Li-ion batteries. J Am Chem Soc 123(35):8598–8599.  https://doi.org/10.1021/ja0112745 CrossRefGoogle Scholar
  227. Roy P, Srivastava SK (2015) J Mater Chem A 3:2454.  https://doi.org/10.1039/c4ta04980b CrossRefGoogle Scholar
  228. Ruetschi P (1977) Review on the lead—acid battery science and technology. J Power Sources 2(1):3–120.  https://doi.org/10.1016/0378-7753(77)85003-9 CrossRefGoogle Scholar
  229. Rui X, Zhao X, Lu Z, Tan H, Sim D, Hng HH, Yan Q (2013) Olivine-type nanosheets for lithium-ion battery cathodes. ACS Nano 7(6):5637–5646.  https://doi.org/10.1021/nn4022263 CrossRefGoogle Scholar
  230. Sa Q, Wang Y (2012) Ni foam as the current collector for high capacity C–Si composite electrode. J Power Sources 208:46–51.  https://doi.org/10.1016/j.jpowsour.2012.02.020 CrossRefGoogle Scholar
  231. Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN (2014) Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci 66:1–86.  https://doi.org/10.1016/j.pmatsci.2014.04.001 CrossRefGoogle Scholar
  232. Saint J, Morcrette M, Larcher D, Tarascon JM (2005) Exploring the Li–Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs. Li. Solid State Ionics 176(1):189–197.  https://doi.org/10.1016/j.ssi.2004.05.021 CrossRefGoogle Scholar
  233. Sakuda A, Hayashi A, Tatsumisago M (2010) Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater 22(3):949–956.  https://doi.org/10.1021/cm901819c CrossRefGoogle Scholar
  234. Santner HJ, Möller K-C, Ivančo J, Ramsey MG, Netzer FP, Yamaguchi S, Winter M (2003) Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups. J Power Sources 119–121:368–372.  https://doi.org/10.1016/S0378-7753(03)00268-4 CrossRefGoogle Scholar
  235. Sayle TXT, Maphanga RR, Ngoepe PE, Sayle DC (2009) Predicting the electrochemical properties of MnO2 nanomaterials used in rechargeable li batteries: simulating nanostructure at the atomistic level. J Am Chem Soc 131(17):6161–6173.  https://doi.org/10.1021/ja8082335 CrossRefGoogle Scholar
  236. Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7(2):627–631.  https://doi.org/10.1039/C3EE41655K CrossRefGoogle Scholar
  237. Shakir I (2014) High performance flexible pseudocapacitor based on nano-architectured spinel nickel cobaltite anchored multiwall carbon nanotubes. Electrochim Acta 132:490–495.  https://doi.org/10.1016/j.electacta.2014.03.138 CrossRefGoogle Scholar
  238. Shi L, Wang Q, Li H, Wang Z, Huang X, Chen L (2001) Electrochemical performance of Ni-deposited graphite anodes for lithium secondary batteries. J Power Sources 102(1):60–67.  https://doi.org/10.1016/S0378-7753(01)00773-X CrossRefGoogle Scholar
  239. Shi Y, Wang Y, Wong JI, Tan AYS, Hsu C-L, Li L-J, Yang HY (2013) Self-assembly of hierarchical MoSx/CNT nanocomposites (2<x<3): towards high performance anode materials for lithium ion batteries. Sci Rep 3:2169.  https://doi.org/10.1038/srep02169 CrossRefGoogle Scholar
  240. Shi T, J. JY, R ZZ, Yong Y (2014) Recent progress in research on high-voltage electrolytes for lithium-ion batteries. ChemPhysChem 15(10):1956–1969.  https://doi.org/10.1002/cphc.201402175 CrossRefGoogle Scholar
  241. Shim E-G, Nam T-H, Kim J-G, Kim H-S, Moon S-I (2007) Effects of functional electrolyte additives for Li-ion batteries. J Power Sources 172(2):901–907.  https://doi.org/10.1016/j.jpowsour.2007.04.089 CrossRefGoogle Scholar
  242. Shin BR, Nam YJ, Oh DY, Kim DH, Kim JW, Jung YS (2014) Comparative study of TiS2/li-in all-solid-state Lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim Acta 146:395–402.  https://doi.org/10.1016/j.electacta.2014.08.139 CrossRefGoogle Scholar
  243. Silbernagel BG (1975) Lithium intercalation complexes of layered transition metal dichalcogenides: an NMR survey of physical properties. Solid State Commun 17(3):361–365.  https://doi.org/10.1016/0038-1098(75)90312-9 CrossRefGoogle Scholar
  244. Slater MD, Donghan K, Eungje L, Johnson CS (2012) Sodium-ion batteries. Adv Funct Mater 23(8):947–958.  https://doi.org/10.1002/adfm.201200691 CrossRefGoogle Scholar
  245. Sobkowiak A, Roberts MR, Younesi R, Ericsson T, Häggström L, Tai C-W, Björefors F (2013) Understanding and controlling the surface chemistry of LiFeSO4F for an enhanced cathode functionality. Chem Mater 25(15):3020–3029.  https://doi.org/10.1021/cm401063s CrossRefGoogle Scholar
  246. Soloveichik GL (2011) Battery technologies for large-scale stationary energy storage. Annu Rev Chem Biomol Eng 2(1):503–527.  https://doi.org/10.1146/annurev-chembioeng-061010-114116 CrossRefGoogle Scholar
  247. Song CJ, Lou XW(D) (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11):1877–1893.  https://doi.org/10.1002/smll.201202601 CrossRefGoogle Scholar
  248. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197.  https://doi.org/10.1016/S0378-7753(98)00193-1 CrossRefGoogle Scholar
  249. Song D, Xu C, Chen Y, He J, Zhao Y, Li P, Fu F (2015) Enhanced thermal and electrochemical properties of PVDF-HFP/PMMA polymer electrolyte by TiO2 nanoparticles. Solid State Ionics 282:31–36.  https://doi.org/10.1016/j.ssi.2015.09.017 CrossRefGoogle Scholar
  250. Su F, Zeng J, Bao X, Yu Y, Lee JY, Zhao XS (2005) Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem Mater 17(15):3960–3967.  https://doi.org/10.1021/cm0502222 CrossRefGoogle Scholar
  251. Su L, Jing Y, Zhou Z (2011) Li ion battery materials with core-shell nanostructures. Nanoscale 3(10):3967–3983.  https://doi.org/10.1039/C1NR10550G CrossRefGoogle Scholar
  252. Subramanian V, Zhu H, Wei B (2006) High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers. J Phys Chem B 110(14):7178–7183.  https://doi.org/10.1021/jp057080j CrossRefGoogle Scholar
  253. Sung H, Wang Y, Wan C (1998) Preparation and characterization of poly(vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-ion batteries. J Electrochem Soc 145(4):1207–1211.  https://doi.org/10.1149/1.1838440 CrossRefGoogle Scholar
  254. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon J-M (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567.  https://doi.org/10.1038/nmat1672 CrossRefGoogle Scholar
  255. Tadhg K, Michael B, Ryan KM (2016) Advances in the application of silicon and germanium nanowires for high-performance lithium-ion batteries. Adv Mater 28(27):5696–5704.  https://doi.org/10.1002/adma.201503978 CrossRefGoogle Scholar
  256. Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61(3):759–770.  https://doi.org/10.1016/j.actamat.2012.10.034 CrossRefGoogle Scholar
  257. Takeda Y, Yamamoto O, Imanishi N (2016) Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes. Electrochemistry 84(4):210–218.  https://doi.org/10.5796/electrochemistry.84.210 CrossRefGoogle Scholar
  258. Tang M, Carter WC, Chiang Y-M (2010) Electrochemically driven phase transitions in insertion electrodes for lithium-ion batteries: examples in lithium metal phosphate olivines. Annu Rev Mater Res 40(1):501–529.  https://doi.org/10.1146/annurev-matsci-070909-104435 CrossRefGoogle Scholar
  259. Tang Y, Zhang Y, Li W, Ma B, Chen X (2015) Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev 44(17):5926–5940.  https://doi.org/10.1039/C4CS00442F CrossRefGoogle Scholar
  260. Tao Z-L, Xu L-N, Gou X-L, Chen J, Yuan H-T (2004) TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem Commun 18:2080–2081.  https://doi.org/10.1039/B403855J CrossRefGoogle Scholar
  261. Tarascon J-M, Gozdz AS, Schmutz C, Shokoohi F, Warren PC (1996) Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ionics 86–88:49–54.  https://doi.org/10.1016/0167-2738(96)00330-X CrossRefGoogle Scholar
  262. Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Lithium insertion into manganese spinels. Mater Res Bull 18(4):461–472.  https://doi.org/10.1016/0025-5408(83)90138-1 CrossRefGoogle Scholar
  263. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43(13):4714–4727.  https://doi.org/10.1039/C4CS00020J CrossRefGoogle Scholar
  264. Uchaker E, Garcia B (2014) Mesocrystals as electrode materials for lithium-ion batteries. Nano Today 9:499–524.  https://doi.org/10.1016/j.nantod.2014.06.004 CrossRefGoogle Scholar
  265. Urbonaite S, Novák P (2014) Importance of “unimportant” experimental parameters in Li–S battery development. J Power Sources 249:497–502.  https://doi.org/10.1016/j.jpowsour.2013.10.095 CrossRefGoogle Scholar
  266. Vanchiappan A, Yun-Sung L, Srinivasan M (2015) Research progress on negative electrodes for practical Li-ion batteries: beyond carbonaceous anodes. Adv Energy Mater 5(13):1402225.  https://doi.org/10.1002/aenm.201402225 CrossRefGoogle Scholar
  267. Wagemaker M, Mulder FM (2013) Properties and promises of nanosized insertion materials for Li-ion batteries. Acc Chem Res 46(5):1206–1215.  https://doi.org/10.1021/ar2001793 CrossRefGoogle Scholar
  268. Wang Y, Cao G (2006) Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem Mater 18(12):2787–2804.  https://doi.org/10.1021/cm052765h CrossRefGoogle Scholar
  269. Wang J, Sun X (2015) Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ Sci 8(4):1110–1138.  https://doi.org/10.1039/C4EE04016C CrossRefGoogle Scholar
  270. Wang J, Raistrick ID, Huggins RA (1986) Behavior of some binary lithium alloys as negative electrodes in organic solvent-based electrolytes. J Electrochem Soc 133(3):457–460.  https://doi.org/10.1149/1.2108601 CrossRefGoogle Scholar
  271. Wang GX, Bewlay S, Yao J, Liu H-K, Dou SX (2004) Tungsten disulfide nanotubes for lithium storage. Electrochem Solid-State Lett 7(10):A321–A323CrossRefGoogle Scholar
  272. Wang XX, Wang JN, Chang H, Zhang YF (2007) Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries. Adv Funct Mater 17(17):3613–3618.  https://doi.org/10.1002/adfm.200700319 CrossRefGoogle Scholar
  273. Wang C, Li D, Too CO, Wallace GG (2009a) Electrochemical properties of graphene paper electrodes used in Lithium batteries. Chem Mater 21(13):2604–2606.  https://doi.org/10.1021/cm900764n CrossRefGoogle Scholar
  274. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R et al (2009b) Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3(4):907–914.  https://doi.org/10.1021/nn900150y CrossRefGoogle Scholar
  275. Wang G, Wang B, Wang X, Park J, Dou S, Ahn H, Kim K (2009c) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 19(44):8378–8384.  https://doi.org/10.1039/B914650D CrossRefGoogle Scholar
  276. Wang Y, Liu H, Wang K, Eiji H, Wang Y, Zhou H (2009d) Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. J Mater Chem 19(37):6789–6795.  https://doi.org/10.1039/B908025B CrossRefGoogle Scholar
  277. Wang B, Wu X-L, Shu C-Y, Guo Y-G, Wang C-R (2010a) Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J Mater Chem 20(47):10661–10664.  https://doi.org/10.1039/C0JM01941K CrossRefGoogle Scholar
  278. Wang H, Cui L-F, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Dai H (2010b) Mn3O4−graphene hybrid as a high-capacity anode material for Lithium ion batteries. J Am Chem Soc 132(40):13978–13980.  https://doi.org/10.1021/ja105296a CrossRefGoogle Scholar
  279. Wang Y, Li H, He P, Hosono E, Zhou H (2010c) Nano active materials for lithium-ion batteries. Nanoscale 2(8):1294–1305.  https://doi.org/10.1039/C0NR00068J CrossRefGoogle Scholar
  280. Wang F, Robert R, Chernova NA, Pereira N, Omenya F, Badway F et al (2011a) Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J Am Chem Soc 133(46):18828–18836.  https://doi.org/10.1021/ja206268a CrossRefGoogle Scholar
  281. Wang Z, Luan D, Madhavi S, Ming Li C, Lou XW(D) (2011b) α-Fe2O3 nanotubes with superior lithium storage capability. Chem Commun 47(28):8061–8063.  https://doi.org/10.1039/C1CC12111A CrossRefGoogle Scholar
  282. Wang Z, Luan D, Boey FYC, Lou XW(D) (2011c) Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J Am Chem Soc 133(13):4738–4741.  https://doi.org/10.1021/ja2004329 CrossRefGoogle Scholar
  283. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224.  https://doi.org/10.1016/j.jpowsour.2012.02.038 CrossRefGoogle Scholar
  284. Wang M, Li G, Xu H, Qian Y, Yang J (2013a) Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from Nanosheets. ACS Appl Mater Interfaces 5(3):1003–1008.  https://doi.org/10.1021/am3026954 CrossRefGoogle Scholar
  285. Wang Z, Gu M, Zhou Y, Zu X, Connell JG, Xiao J, Gao F (2013b) Electron-rich driven electrochemical solid-state amorphization in Li–Si alloys. Nano Lett 13(9):4511–4516.  https://doi.org/10.1021/nl402429a CrossRefGoogle Scholar
  286. Wang Z, Cao D, Xu R, Qu S, Wang Z, Lei Y (2016) Realizing ordered arrays of nanostructures: a versatile platform for converting and storing energy efficiently. Nano Energy 19:328–362.  https://doi.org/10.1016/j.nanoen.2015.11.032 CrossRefGoogle Scholar
  287. Wang M, Le AV, Shi Y, Noelle DJ, Wu D, Fan J, Qiao Y (2017) Sigmoidal current collector for lithium-ion battery. J Appl Phys 121(1):15303.  https://doi.org/10.1063/1.4973585 CrossRefGoogle Scholar
  288. Wei W, Qian S, Ye Z, Sisi H, Qingqing W, Jue D, Huisheng P (2015) A gum-like lithium-ion battery based on a novel arched structure. Adv Mater 27(8):1363–1369.  https://doi.org/10.1002/adma.201405127 CrossRefGoogle Scholar
  289. Weiwei Z, Chuanwei C, Jinping L, Yan TY, Jian J, Xingtao J, Jin FH (2011) Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv Funct Mater 21(13):2439–2445.  https://doi.org/10.1002/adfm.201100088 CrossRefGoogle Scholar
  290. Wen CJ, Huggins RA (1981) Chemical diffusion in intermediate phases in the lithium-silicon system. J Solid State Chem 37(3):271–278.  https://doi.org/10.1016/0022-4596(81)90487-4 CrossRefGoogle Scholar
  291. Wen CJ, Boukamp BA, Huggins RA, Weppner W (1979) Thermodynamic and mass transport properties of “ LiAl ”. J Electrochem Soc 126(12):2258–2266.  https://doi.org/10.1149/1.2128939 CrossRefGoogle Scholar
  292. Wen Z, Itoh T, Ikeda M, Hirata N, Kubo M, Yamamoto O (2000) Characterization of composite electrolytes based on a hyperbranched polymer. J Power Sources 90(1):20–26.  https://doi.org/10.1016/S0378-7753(00)00442-0 CrossRefGoogle Scholar
  293. Wen LX, Ming LC, Archer LA (2009) Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 21(24):2536–2539.  https://doi.org/10.1002/adma.200803439 CrossRefGoogle Scholar
  294. Wen Z, Ci S, Mao S, Cui S, He Z, Chen J (2013) CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries. Nanoscale Res Lett 8(1):499.  https://doi.org/10.1186/1556-276X-8-499 CrossRefGoogle Scholar
  295. Wenzel S, Randau S, Leichtweiß T, Weber DA, Sann J, Zeier WG, Janek J (2016) Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater 28(7):2400–2407.  https://doi.org/10.1021/acs.chemmater.6b00610 CrossRefGoogle Scholar
  296. Whitehead AH, Schreiber M (2005) Current collectors for positive electrodes of lithium-based batteries. J Electrochem Soc 152(11):A2105–A2113.  https://doi.org/10.1149/1.2039587 CrossRefGoogle Scholar
  297. Whittingham MS (1978) Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Prog Solid State Chem 12(1):41–99.  https://doi.org/10.1016/0079-6786(78)90003-1 CrossRefGoogle Scholar
  298. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302.  https://doi.org/10.1021/cr020731c CrossRefGoogle Scholar
  299. Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114(23):11414–11443.  https://doi.org/10.1021/cr5003003 CrossRefGoogle Scholar
  300. Whittingham MS, Thompson AH (1975) Intercalation and lattice expansion in titanium disulfide. J Chem Phys 62(4):1588.  https://doi.org/10.1063/1.430581 CrossRefGoogle Scholar
  301. Wrodnigg GH, Wrodnigg TM, Besenhard JO, Winter M (1999) Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochem Commun 1(3):148–150.  https://doi.org/10.1016/S1388-2481(99)00023-5 CrossRefGoogle Scholar
  302. Wrodnigg GH, Besenhard JO, Winter M (2001) Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes? J Power Sources 97–98:592–594.  https://doi.org/10.1016/S0378-7753(01)00536-5 CrossRefGoogle Scholar
  303. Wu M-S, Chang H-W (2013) Self-assembly of NiO-coated ZnO nanorod electrodes with core–shell nanostructures as anode materials for rechargeable lithium-ion batteries. J Phys Chem C 117(6):2590–2599.  https://doi.org/10.1021/jp3079327 CrossRefGoogle Scholar
  304. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5):414–429.  https://doi.org/10.1016/j.nantod.2012.08.004 CrossRefGoogle Scholar
  305. Wu Z-S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Cheng H-M (2010) Graphene anchored with Co3O4 nanoparticles as anode of Lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6):3187–3194.  https://doi.org/10.1021/nn100740x CrossRefGoogle Scholar
  306. Wu HB, Chen JS, Hng HH, Lou XW(D) (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4(8):2526–2542.  https://doi.org/10.1039/C2NR11966H CrossRefGoogle Scholar
  307. Wu Y, Reddy MV, Chowdari BVR, Ramakrishna S (2013) Long-term cycling studies on electrospun carbon nanofibers as anode material for lithium ion batteries. ACS Appl Mater Interfaces 5(22):12175–12184.  https://doi.org/10.1021/am404216j CrossRefGoogle Scholar
  308. Wu R, Qian X, Zhou K, Wei J, Lou J, Ajayan PM (2014) Porous spinel ZnxCo3–xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8(6):6297–6303.  https://doi.org/10.1021/nn501783n CrossRefGoogle Scholar
  309. Xi J, Tang X (2004) Enhanced lithium ion transference number and ionic conductivity of composite polymer electrolyte doped with organic–inorganic hybrid P123@SBA-15. Chem Phys Lett 400(1):68–73.  https://doi.org/10.1016/j.cplett.2004.10.094 CrossRefGoogle Scholar
  310. Xia H, Lai M, Lu L (2010) Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem 20(33):6896–6902.  https://doi.org/10.1039/C0JM00759E CrossRefGoogle Scholar
  311. Xia X, Tu J, Zhang Y, Wang X, Gu C, Zhao X, Fan HJ (2012) High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6(6):5531–5538.  https://doi.org/10.1021/nn301454q CrossRefGoogle Scholar
  312. Xiao L, Ai X, Cao Y, Yang H (2004) Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries. Electrochim Acta 49(24):4189–4196.  https://doi.org/10.1016/j.electacta.2004.04.013 CrossRefGoogle Scholar
  313. Xin X, Zhou X, Wu J, Yao X, Liu Z (2012) Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano 6(12):11035–11043.  https://doi.org/10.1021/nn304725m CrossRefGoogle Scholar
  314. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418.  https://doi.org/10.1021/cr030203g CrossRefGoogle Scholar
  315. Xu JJ, Ye H (2005) Polymer gel electrolytes based on oligomeric polyether/cross-linked PMMA blends prepared via in situ polymerization. Electrochem Commun 7(8):829–835.  https://doi.org/10.1016/j.elecom.2005.04.034 CrossRefGoogle Scholar
  316. Xu K, Ding MS, Zhang S, Allen JL, Jow TR (2002) An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. J Electrochem Soc 149(5):A622–A626.  https://doi.org/10.1149/1.1467946 CrossRefGoogle Scholar
  317. Xu L, Kim C, Shukla AK, Dong A, Mattox TM, Milliron DJ, Cabana J (2013) Monodisperse Sn nanocrystals as a platform for the study of mechanical damage during electrochemical reactions with Li. Nano Lett 13(4):1800–1805.  https://doi.org/10.1021/nl400418c CrossRefGoogle Scholar
  318. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682.  https://doi.org/10.1021/cr500192f CrossRefGoogle Scholar
  319. Yan H, Ming Z, Fukuan S, Xiaoying L, Zijie T, Yukun W, Chunyi Z (2017) An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew Chem Int Ed 56(31):9141–9145.  https://doi.org/10.1002/anie.201705212 CrossRefGoogle Scholar
  320. Yang Z, Wu H-Q, Simard B (2002) Charge–discharge characteristics of raw acid-oxidized carbon nanotubes. Electrochem Commun 4(7):574–578.  https://doi.org/10.1016/S1388-2481(02)00384-3 CrossRefGoogle Scholar
  321. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613.  https://doi.org/10.1021/cr100290v CrossRefGoogle Scholar
  322. Yang J, Han X, Zhang X, Cheng F, Chen J (2013) Nano Res 6(9):679–687.  https://doi.org/10.1007/s12274-013-0343-5 CrossRefGoogle Scholar
  323. Yao XL, Xie S, Chen CH, Wang QS, Sun JH, Li YL, Lu SX (2005) Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries. J Power Sources 144(1):170–175.  https://doi.org/10.1016/j.jpowsour.2004.11.042 CrossRefGoogle Scholar
  324. Ye Z, Yang Z, Xunliang C, Wei W, Jing R, Xin F et al (2015) Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew Chem Int Ed 54(38):11177–11182.  https://doi.org/10.1002/anie.201506142 CrossRefGoogle Scholar
  325. Yin SY, Song L, Wang XY, Zhang MF, Zhang KL, Zhang YX (2009) Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction. Electrochim Acta 54(24):5629–5633.  https://doi.org/10.1016/j.electacta.2009.04.067 CrossRefGoogle Scholar
  326. Yonggang W, Yarong W, Eiji H, Kaixue W, Haoshen Z (2008) The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 47(39):7461–7465.  https://doi.org/10.1002/anie.200802539 CrossRefGoogle Scholar
  327. Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282.  https://doi.org/10.1021/nl800957b CrossRefGoogle Scholar
  328. Yoon S, Park C-M, Sohn H-J (2008) Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem Solid-State Lett 11(4):A42–A45.  https://doi.org/10.1149/1.2836481 CrossRefGoogle Scholar
  329. Yoon SJ, Myung ST, Noh HJ, Lu J, Amine K, Sun YK (2014) ChemSusChem 7(12):3295–3303CrossRefGoogle Scholar
  330. Yoshimoto N, Niida Y, Egashira M, Morita M (2006) Nonflammable gel electrolyte containing alkyl phosphate for rechargeable lithium batteries. J Power Sources 163(1):238–242.  https://doi.org/10.1016/j.jpowsour.2006.02.090 CrossRefGoogle Scholar
  331. Youn DH, Meyerson ML, Klavetter KC, Friedman KA, Coffman SS, Lee J-W et al (2016) Mixing super P-Li with N-doped mesoporous templated carbon improves the high rate performance of a potential lithium ion battery anode. J Electrochem Soc 163(6):A953–A957.  https://doi.org/10.1149/2.0771606jes CrossRefGoogle Scholar
  332. Young T-H, Chen L-W (1995) Pore formation mechanism of membranes from phase inversion process. Desalination 103(3):233–247.  https://doi.org/10.1016/0011-9164(95)00076-3 CrossRefGoogle Scholar
  333. Yuan L-X, Wang Z-H, Zhang W-X, Hu X-L, Chen J-T, Huang Y-H, Goodenough JB (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4(2):269–284.  https://doi.org/10.1039/C0EE00029A CrossRefGoogle Scholar
  334. Yuan-Li D, Jian X, Gao-Shao C, Tie-Jun Z, Hong-Ming Y, Xin-Bing Z (2010) Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium-ion batteries. Adv Funct Mater 21(2):348–355.  https://doi.org/10.1002/adfm.201001448 CrossRefGoogle Scholar
  335. Yue W, Lin Z, Jiang S, Yang X (2012) Preparation of graphene-encapsulated mesoporous metal oxides and their application as anode materials for lithium-ion batteries. J Mater Chem 22(32):16318–16323.  https://doi.org/10.1039/C2JM30805C CrossRefGoogle Scholar
  336. Zaghib K, Mauger A, Gendron F, Julien CM (2008) Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem Mater 20(2):462–469.  https://doi.org/10.1021/cm7027993 CrossRefGoogle Scholar
  337. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364.  https://doi.org/10.1016/j.jpowsour.2006.10.065 CrossRefGoogle Scholar
  338. Zhang SS (2012) Binder based on polyelectrolyte for high capacity density lithium/sulfur battery. J Electrochem Soc 159(8):A1226–A1229.  https://doi.org/10.1149/2.039208jes CrossRefGoogle Scholar
  339. Zhang SS, Xu K, Jow TR (2003) Alkaline composite film as a separator for rechargeable lithium batteries. J Solid State Electrochem 7(8):492–496.  https://doi.org/10.1007/s10008-003-0375-y CrossRefGoogle Scholar
  340. Zhang L-S, Jiang L-Y, Yan H-J, Wang WD, Wang W, Song W-G, Wan L-J (2010a) Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J Mater Chem 20(26):5462–5467.  https://doi.org/10.1039/C0JM00672F CrossRefGoogle Scholar
  341. Zhang M, Lei D, Yin X, Chen L, Li Q, Wang Y, Wang T (2010b) Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J Mater Chem 20(26):5538–5543.  https://doi.org/10.1039/C0JM00638F CrossRefGoogle Scholar
  342. Zhang Z, Bao W, Lu H, Jia M, Xie K, Lai Y, Li J (2012) Water-soluble Polyacrylic acid as a binder for sulfur cathode in lithium-sulfur battery. ECS Electrochem Lett 1(2):A34–A37.  https://doi.org/10.1149/2.009202eel CrossRefGoogle Scholar
  343. Zhang K, Kim H-J, Shi X, Lee J-T, Choi J-M, Song M-S, Park JH (2013a) Graphene/acid coassisted synthesis of ultrathin MoS2 nanosheets with outstanding rate capability for a lithium battery anode. Inorg Chem 52(17):9807–9812.  https://doi.org/10.1021/ic400735f CrossRefGoogle Scholar
  344. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013b) Nanomaterials for energy conversion and storage. Chem Soc Rev 42(7):3127–3171.  https://doi.org/10.1039/C3CS00009E CrossRefGoogle Scholar
  345. Zhang X, Cheng F, Yang J, Chen J (2013c) LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett 13(6):2822–2825.  https://doi.org/10.1021/nl401072x CrossRefGoogle Scholar
  346. Zhang J, Sun B, Huang X, Chen S, Wang G (2014) Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci Rep 4:6007.  https://doi.org/10.1038/srep06007 CrossRefGoogle Scholar
  347. Zhang J, Ge H, Li Z, Ding Z (2015a) Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain. J Power Sources 273:1030–1037.  https://doi.org/10.1016/j.jpowsour.2014.09.181 CrossRefGoogle Scholar
  348. Zhang M, Wang T, Cao G (2015b) Promises and challenges of tin-based compounds as anode materials for lithium-ion batteries. Int Mater Rev 60(6):330–352.  https://doi.org/10.1179/1743280415Y.0000000004 CrossRefGoogle Scholar
  349. Zhang S, Cao J, Shang Y, Wang L, He X, Li J, Wang Y (2015c) Nanocomposite polymer membrane derived from nano TiO2-PMMA and glass fiber nonwoven: high thermal endurance and cycle stability in lithium ion battery applications. J Mater Chem A 3(34):17697–17703.  https://doi.org/10.1039/C5TA02781K CrossRefGoogle Scholar
  350. Zhang B, Dugas R, Rousse G, Rozier P, Abakumov AM, Tarascon J-M (2016) Insertion compounds and composites made by ball milling for advanced sodium-ion batteries. Nat Commun 7:10308. Retrieved from.  https://doi.org/10.1038/ncomms10308 CrossRefGoogle Scholar
  351. Zhao C, Wang C, Yue Z, Shu K, Wallace GG (2013) Intrinsically stretchable supercapacitors composed of polypyrrole electrodes and highly stretchable gel electrolyte. ACS Appl Mater Interfaces 5(18):9008–9014.  https://doi.org/10.1021/am402130j CrossRefGoogle Scholar
  352. Zhao H, Zhou M, Wen L, Lei Y (2015) Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion. Nano Energy 13:790–813.  https://doi.org/10.1016/j.nanoen.2015.02.024 CrossRefGoogle Scholar
  353. Zheng GY et al (2014a) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9:618–623.  https://doi.org/10.1038/nnano.2014.152 CrossRefGoogle Scholar
  354. Zheng F, Zhu D, Chen Q (2014b) Facile fabrication of porous NixCo3–xO4 nanosheets with enhanced electrochemical performance as anode materials for Li-ion batteries. ACS Appl Mater Interfaces 6(12):9256–9264.  https://doi.org/10.1021/am501512j CrossRefGoogle Scholar
  355. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88.  https://doi.org/10.1039/C2NR32040A CrossRefGoogle Scholar
  356. Zhou S, Liu X, Wang D (2010) Si/TiSi2 hetero nanostructures as high-capacity anode material for Li-ion batteries. Nano Lett 10(3):860–863.  https://doi.org/10.1021/nl903345f CrossRefGoogle Scholar
  357. Zhou G, Wang D-W, Yin L-C, Li N, Li F, Cheng H-M (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4):3214–3223.  https://doi.org/10.1021/nn300098m CrossRefGoogle Scholar
  358. Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4):3333–3338.  https://doi.org/10.1021/nn200493r CrossRefGoogle Scholar
  359. Zou Y, Kan J, Wang Y (2011) Fe2O3-graphene rice-on-sheet nanocomposite for high and fast lithium ion storage. J Phys Chem C 115(42):20747–20753.  https://doi.org/10.1021/jp206876t CrossRefGoogle Scholar
  360. Zoulalian V, Monge S, Zürcher S, Textor M, Robin JJ, Tosatti S (2006) Functionalization of titanium oxide surfaces by means of poly(alkyl-phosphonates). J Phys Chem B 110(51):25603–25605.  https://doi.org/10.1021/jp066811s CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pushpendra Kumar
    • 1
  • Pravin K. Dwivedi
    • 1
  • Poonam Yadav
    • 1
  • Manjusha V. Shelke
    • 1
    Email author
  1. 1.Polymer and Advanced Materials Laboratory, Physical & Material’s Chemistry DivisionCSIR-National Chemical LaboratoryPuneIndia

Personalised recommendations