Advertisement

Metal and Metal Oxide-Based Nanomaterials for Electrochemical Applications

  • Chiranjita Goswami
  • Bhugendra Chutia
  • Pankaj BharaliEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 23)

Abstract

The development of nanotechnology marked a new era in the field of catalysis. The fascinating electronic, structural, and magnetic properties of the nanomaterials arising from its shape, size, and unusually high surface-to-volume ratio make them unique from the bulk materials. These properties facilitate various chemical reactions including fuel cell and other electrochemical reactions for energy and environmental applications. In the recent years, fuel cells have emerged as alternative energy sources to meet the ever-increasing energy demands. Thus, designing suitable catalyst to boost the rate of the reactions associated with fuel cells or other energy storage devices has become very crucial. Different types of electrochemical reactions include oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and electrooxidation of small organic molecules like methanol, ethanol, formic acid, etc. On the other hand electrochemical CO2 reduction to various value-added products is a promising strategy to address the atmospheric CO2 levels. Herein, we have mainly emphasized the catalytic behavior of different types of morphology and size-dependent nanomaterials toward electrochemical reduction of oxygen and CO2 and electrooxidation of formic acid and ethanol.

Keywords

Nanocatalysts Energy Fuel cells Oxygen reduction Formic acid oxidation Ethanol oxidation Environment CO2 reduction 

Notes

Acknowledgments

The authors thank Tezpur University, Council of Scientific and Industrial Research (CSIR No: 01(2813)/14/EMR-II), New Delhi, and Science and Engineering Research Board (SERB-DST No: SB/FT/CS-048/2014), New Delhi, for generous financial support. CG and BC thank Tezpur University and CSIR, New Delhi, for research fellowship, respectively.

References

  1. Ang SY, Walsh DA (2010) Palladium–vanadium alloy electrocatalysts for oxygen reduction: effect of heat treatment on electrocatalytic activity and stability. Appl Catal B 98(1–2):49–56.  https://doi.org/10.1016/j.apcatb.2010.04.025 CrossRefGoogle Scholar
  2. Antolini E, Gonzalez ER (2010a) Alkaline direct alcohol fuel cells. J Power Sources 195(11):3431–3450.  https://doi.org/10.1016/j.jpowsour.2009.11.145 CrossRefGoogle Scholar
  3. Antolini E, Gonzalez ER (2010b) Tungsten-based materials for fuel cell applications. Appl Catal B Environ 96(3–4):245–266.  https://doi.org/10.1016/j.apcatb.2010.02.039 CrossRefGoogle Scholar
  4. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL, Kerfeld CA (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113(8):6621–6658.  https://doi.org/10.1021/cr300463y CrossRefGoogle Scholar
  5. Armstrong FA, Hirst J (2011) Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc Natl Acad Sci U S A 108(34):14049–14054.  https://doi.org/10.1073/pnas.1103697108 CrossRefGoogle Scholar
  6. Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38(5):L05805.  https://doi.org/10.1029/2010GL046270 CrossRefGoogle Scholar
  7. Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28(3):141–145.  https://doi.org/10.1021/ar00051a007 CrossRefGoogle Scholar
  8. Bergamaski K, Gonzalez ER, Nart FC (2008) Ethanol oxidation on carbon supported platinum-rhodium bimetallic catalysts. Electrochim Acta 53(13):4396–4406.  https://doi.org/10.1016/j.electacta.2008.01.060 CrossRefGoogle Scholar
  9. Bharali P, Saikia P, Reddy BM (2012) Large-scale synthesis of ceria-based nano-oxides with high CO oxidation activity. Cat Sci Technol 2:931–933.  https://doi.org/10.1039/c2cy20024d CrossRefGoogle Scholar
  10. Bharali P, Saikia P, Katta L, Reddy BM (2013) Enhancement in CO oxidation activity of nanosized CexZr1-xO2 solid solutions by incorporation of additional dopants. J Ind Eng Chem 19:327–336.  https://doi.org/10.1016/j.jiec.2012.08.021 CrossRefGoogle Scholar
  11. Bhowmik T, Kundu MK, Barman S (2017) Highly efficient electrocatalytic oxidation of formic acid on palladium nanoparticles-graphitic carbon nitride composite. Int J Hydrog Energy 42(1):212–217.  https://doi.org/10.1016/j.ijhydene.2016.11.095 CrossRefGoogle Scholar
  12. Brett DJ, Kucernak AR, Aguiar P, Atkins SC, Brandon NP, Clague R, Cohen LF, Hinds G, Kalyvas C, Offer GJ, Ladewig B (2010) What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance. ChemPhysChem 11(13):2714–2731.  https://doi.org/10.1002/cphc.201000487 CrossRefGoogle Scholar
  13. Brouzgou A, Song SQ, Tsiakaras P (2012) Low and non-platinum electrocatalysts for PEMFCs: current status, challenges and prospects. Appl Catal B Environ 127:371–388.  https://doi.org/10.1016/j.apcatb.2012.08.031 CrossRefGoogle Scholar
  14. Cai F, Gao D, Si R, Ye Y, He T, Miao S, Wang G, Bao X (2017a) Effect of metal deposition sequence in carbon-supported Pd–Pt catalysts on activity towards CO2 electroreduction to formate. Electrochem Commun 76:1–5.  https://doi.org/10.1016/j.elecom.2017.01.009 CrossRefGoogle Scholar
  15. Cai F, Gao D, Zhou H, Wang G, He T, Gong H, Miao S, Yang F, Wangb J, Bao X (2017b) Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction. Chem Sci 8(4):2569–2573.  https://doi.org/10.1039/c6sc04966d CrossRefGoogle Scholar
  16. Cao A, Lu R, Veser G (2010) Stabilizing metal nanoparticles for heterogeneous catalysis. Phys Chem Chem Phys 12(41):13499–13510.  https://doi.org/10.1039/c0cp00729c CrossRefGoogle Scholar
  17. Carrette L, Friedrich KA, Stimming U (2000) Fuel cells: principles, types, fuels, and applications. ChemPhysChem 1(4):162–193.  https://doi.org/10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO;2-Z CrossRefGoogle Scholar
  18. Chaplin RPS, Wragg AA (2003) Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation. J Appl Electrochem 33(12):1107–1123.  https://doi.org/10.1023/b:jach.0000004018.57792.b8 CrossRefGoogle Scholar
  19. Chen X, Wu G, Chen J, Chen X, Xie Z, Wang X (2011) Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J Am Chem Soc 133(11):3693–3695.  https://doi.org/10.1021/ja110313d CrossRefGoogle Scholar
  20. Chen J, Zhou N, Wang H, Peng Z, Li H, Tang Y, Liu K (2015) Synergistically enhanced oxygen reduction activity of MnOx–CeO2/Ketjenblack composites. Chem Commun 51(50):10123–10126.  https://doi.org/10.1039/c5cc02343b CrossRefGoogle Scholar
  21. Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berná A, Herrero E, Feliu JM (2008) Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes. Faraday Discuss 140:379–397.  https://doi.org/10.1039/b802160k CrossRefGoogle Scholar
  22. Delacote C, Bonakdarpour A, Johnston CM, Zelenay P, Wieckowski A (2009) Aqueous-based synthesis of ruthenium–selenium catalyst for oxygen reduction reaction. Faraday Discuss 140:269–281.  https://doi.org/10.1039/b806377j CrossRefGoogle Scholar
  23. Du C, Chen M, Wang W, Yin G (2010) Nanoporous PdNi alloy nanowires as highly active catalysts for the electro-oxidation of formic acid. ACS Appl Mater Interfaces 3(2):105–109.  https://doi.org/10.1021/am100803d CrossRefGoogle Scholar
  24. Fathirad F, Afzali D, Mostafavi A (2016) Bimetallic Pd–Zn nanoalloys supported on Vulcan XC-72R carbon as anode catalysts for oxidation process in formic acid fuel cell. Int J Hydrog Energy 41(30):13220–13226.  https://doi.org/10.1016/j.ijhydene.2016.05.098 CrossRefGoogle Scholar
  25. Feng L, Yang J, Hu Y, Zhu J, Liu C, Xing W (2012) Electrocatalytic properties of PdCeOx/C anodic catalyst for formic acid electrooxidation. Int J Hydrog Energy 37(6):4812–4818.  https://doi.org/10.1016/j.ijhydene.2011.12.114 CrossRefGoogle Scholar
  26. Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137(13):4288–4291.  https://doi.org/10.1021/jacs.5b00046 CrossRefGoogle Scholar
  27. Gao D, Zhang Y, Zhou Z, Cai F, Zhao X, Huang W, Li Y, Zhu J, Liu P, Yang F, Bao X, Wang G (2017) Enhancing CO2 electroreduction with the metal–oxide interface. J Am Chem Soc 139(16):5652–5655.  https://doi.org/10.1021/jacs.7b00102 CrossRefGoogle Scholar
  28. Guo S, Zhang S, Wu L, Sun S (2012) Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen. Angew Chem 124(47):11940–11943.  https://doi.org/10.1002/ange.201206152 CrossRefGoogle Scholar
  29. Guo S, Li D, Zhu H, Zhang S, Markovic NM, Stamenkovic VR, Sun S (2013) FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew Chem Int Ed 52(12):3465–3468.  https://doi.org/10.1002/anie.201209871 CrossRefGoogle Scholar
  30. Habibi B, Delnavaz N (2015) Pt–CeO2/reduced graphene oxide nanocomposite for the electrooxidation of formic acid and formaldehyde. RSC Adv 5(90):73639–73650.  https://doi.org/10.1039/c5ra09770c CrossRefGoogle Scholar
  31. Ham DJ, Lee JS (2009) Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2(4):873–899.  https://doi.org/10.3390/en20400873 CrossRefGoogle Scholar
  32. He L, Liang B, Li L, Yang X, Huang Y, Wang A, Zhang T (2015) Cerium-oxide-modified nickel as a non-noble metal catalyst for selective decomposition of hydrous hydrazine to hydrogen. ACS Catal 5(3):1623–1628.  https://doi.org/10.1021/acscatal.5b00143 CrossRefGoogle Scholar
  33. Hietala J, Vuori A, Johnsson P, Pollari I, Reutemann W, Kieczka H (2016) Formic acid. Ullmann’s encyclopedia of industrial chemistry. Wiley, New York, pp 1–22.  https://doi.org/10.1002/14356007.a12_013.pub3 CrossRefGoogle Scholar
  34. Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39(11–12):1833–1839.  https://doi.org/10.1016/0013-4686(94)85172-7 CrossRefGoogle Scholar
  35. Jana R, Subbarao U, Peter SC (2016) Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol. J Power Sources 301:160–169.  https://doi.org/10.1016/j.jpowsour.2015.09.114 CrossRefGoogle Scholar
  36. Jhong HR, Ma S, Kenis PJA (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Chem Eng 2:191–199.  https://doi.org/10.1016/j.coche.2013.03.005 CrossRefGoogle Scholar
  37. Jiang K, Zhang HX, Zou S, Cai WB (2014) Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys Chem Chem Phys 16(38):20360–20376.  https://doi.org/10.1039/c4cp03151b CrossRefGoogle Scholar
  38. Jiang S, Yi B, Zhao Q, Yu H, Shao Z (2017) Palladium–nickel catalysts based on ordered titanium dioxide nanorod arrays with high catalytic performance for formic acid electro-oxidation. RSC Adv 7(19):11719–11723.  https://doi.org/10.1039/c7ra00194k CrossRefGoogle Scholar
  39. Justin P, Rao GR (2009) Enhanced activity of methanol electro-oxidation on Pt–V2O5/C catalysts. Catal Today 141(1–2):138–143.  https://doi.org/10.1016/j.cattod.2008.03.019 CrossRefGoogle Scholar
  40. Justin P, Charan PHK, Rao GR (2010) High performance Pt–Nb2O5/C electrocatalysts for methanol electrooxidation in acidic media. Appl Catal B Environ 100(3–4):510–515.  https://doi.org/10.1016/j.apcatb.2010.09.001 CrossRefGoogle Scholar
  41. Kang Y, Murray CB (2010) Synthesis and electrocatalytic properties of cubic Mn−Pt nanocrystals (nanocubes). J Am Chem Soc 132(22):7568–7569.  https://doi.org/10.1021/ja100705j CrossRefGoogle Scholar
  42. Kariuki NN, Wang X, Mawdsley JR, Ferrandon MS, Niyogi SG, Vaughey JT, Myers DJ (2010) Colloidal synthesis and characterization of carbon-supported Pd−Cu nanoparticle oxygen reduction electrocatalysts. Chem Mater 22(14):4144–4152.  https://doi.org/10.1021/cm100155z CrossRefGoogle Scholar
  43. Klinkova A, De Luna P, Dinh CT, Voznyy O, Larin EM, Kumacheva E, Sargent EH (2016) Rational design of efficient palladium catalysts for electroreduction of carbon dioxide to formate. ACS Catal 6(12):8115–8120.  https://doi.org/10.1021/acscatal.6b01719 CrossRefGoogle Scholar
  44. Klinkova A, De Luna P, Sargent EH, Kumacheva E, Cherepanov PV (2017) Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. J Mater Chem A 5:11582–11585.  https://doi.org/10.1039/c7ta00902j CrossRefGoogle Scholar
  45. Kobayashi T, Otomo J, Wen CJ, Takahashi H (2003) Direct alcohol fuel cell—relation between the cell performance and the adsorption of intermediate originating in the catalyst-fuel combinations. J Power Sources 124(1):34–39.  https://doi.org/10.1016/S0378-7753(03)00622-0 CrossRefGoogle Scholar
  46. Kowal A, Li M, Shao M, Sasaki K, Vukmirovic MB, Zhang J, Marinkovic NS, Liu P, Frenkel AI, Adzic RR (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8(4):325.  https://doi.org/10.1038/nmat2359 CrossRefGoogle Scholar
  47. Lam E, Luong JH (2014) Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal 4(10):3393–3410.  https://doi.org/10.1021/cs5008393 CrossRefGoogle Scholar
  48. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Léger JM (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105(2):283–296.  https://doi.org/10.1016/S0378-7753(01)00954-5 CrossRefGoogle Scholar
  49. Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Léger JM (2004) Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim Acta 49(22–23):3901–3908.  https://doi.org/10.1016/j.electacta.2004.01.078 CrossRefGoogle Scholar
  50. Landman U, Heiz U (eds) (2007) Nanocatalysis. Springer, eBook ISBN: 978-3-540-32646-5.  https://doi.org/10.1007/978-3-540-32646-5
  51. Léger JM, Rousseau S, Coutanceau C, Hahn F, Lamy C (2005) How bimetallic electrocatalysts does work for reactions involved in fuel cells?: example of ethanol oxidation and comparison to methanol. Electrochim Acta 50(25–26):5118–5125.  https://doi.org/10.1016/j.electacta.2005.01.051 CrossRefGoogle Scholar
  52. Lesiak B, Mazurkiewicz M, Malolepszy A, Stobinski L, Mierzwa B, Mikolajczuk-Zychora A, Juchniewicz K, Borodzinski A, Zemek J, Jiricek P (2016) Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell. Appl Surf Sci 387:929–937.  https://doi.org/10.1016/j.apsusc.2016.06.152 CrossRefGoogle Scholar
  53. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103(43):15729–15735.  https://doi.org/10.1073/pnas.0603395103 CrossRefGoogle Scholar
  54. Li R, Wei Z, Huang T, Yu A (2011) Ultrasonic-assisted synthesis of Pd–Ni alloy catalysts supported on multi-walled carbon nanotubes for formic acid electrooxidation. Electrochim Acta 56(19):6860–6865.  https://doi.org/10.1016/j.electacta.2011.05.097 CrossRefGoogle Scholar
  55. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786.  https://doi.org/10.1038/nmat3087 CrossRefGoogle Scholar
  56. Liu CW, Wei YC, Wang KW (2010) Promotion of ceria-modified Pt–Au/C cathode catalysts for oxygen reduction reaction by H2-induced surface segregation. Chem Commun 46(14):2483–2485.  https://doi.org/10.1039/b920212a CrossRefGoogle Scholar
  57. Liu IT, Hon MH, Teoh LG (2013) Structure and optical properties of CeO2 nanoparticles synthesized by precipitation. J Electron Mater 42(8):2536.  https://doi.org/10.1007/s11664-013-2617-9 CrossRefGoogle Scholar
  58. Liu K, Huang X, Wang H, Li F, Tang Y, Li J, Shao M (2016) Co3O4-CeO2/C as a highly active electrocatalyst for oxygen reduction reaction in Al-air batteries. ACS Appl Mater Interfaces 8(50):34422–34430.  https://doi.org/10.1021/acsami.6b12294 CrossRefGoogle Scholar
  59. Lu H, Huang Y, Yan J, Fan W, Liu T (2015) Nitrogen-doped graphene/carbon nanotube/Co3O4 hybrids: one-step synthesis and superior electrocatalytic activity for the oxygen reduction reaction. RSC Adv 5(115):94615–94622.  https://doi.org/10.1039/c5ra17759f CrossRefGoogle Scholar
  60. Ma S, Sadakiyo M, Heima M, Luo R, Haasch RT, Gold JI, Yamauchi M, Kenis PJ (2016) Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J Am Chem Soc 139(1):47–50.  https://doi.org/10.1021/jacs.6b10740 CrossRefGoogle Scholar
  61. Markovic NM, Gasteiger HA, Ross PN Jr (1995) Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: rotating ring-Pt (hkl) disk studies. J Phys Chem 99(11):3411–3415.  https://doi.org/10.1021/j100011a001 CrossRefGoogle Scholar
  62. Mazumder V, Chi M, More KL, Sun S (2010a) Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. J Am Chem Soc 132(23):7848–7849.  https://doi.org/10.1021/ja1024436 CrossRefGoogle Scholar
  63. Mazumder V, Lee Y, Sun S (2010b) Recent development of active nanoparticle catalysts for fuel cell reactions. Adv Funct Mater 20(8):1224–1231.  https://doi.org/10.1002/adfm.200902293 CrossRefGoogle Scholar
  64. Meher SK, Rao GR (2012) Polymer-assisted hydrothermal synthesis of highly reducible shuttle-shaped CeO2: microstructural effect on promoting Pt/C for methanol electrooxidation. ACS Catal 2(12):2795–2809.  https://doi.org/10.1021/cs300473e CrossRefGoogle Scholar
  65. Meher SK, Rao GR (2013) Morphology-controlled promoting activity of nanostructured MnO2 for methanol and ethanol electrooxidation on Pt/C. J Phys Chem C 117(10):4888–4900.  https://doi.org/10.1021/jp3093995 CrossRefGoogle Scholar
  66. Min X, Kanan MW (2015) Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. J Am Chem Soc 137(14):4701–4708.  https://doi.org/10.1021/ja511890h CrossRefGoogle Scholar
  67. Mondal AK, Liu H, Li ZF, Wang G (2016) Multiwall carbon nanotube-nickel cobalt oxide hybrid structure as high performance electrodes for supercapacitors and lithium ion batteries. Electrochim Acta 190:346–353.  https://doi.org/10.1016/j.electacta.2015.12.132 CrossRefGoogle Scholar
  68. Morales-Acosta D, Ledesma-Garcia J, Godinez LA, Rodríguez HG, Alvarez-Contreras L, Arriaga LG (2010) Development of Pd and Pd–Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation. J Power Sources 195(2):461–465.  https://doi.org/10.1016/j.jpowsour.2009.08.014 CrossRefGoogle Scholar
  69. Mura MG, Luca LD, Giacomelli G, Porcheddu A (2012) Formic acid: a promising bio-renewable feedstock for fine chemicals. Adv Synth Catal 354(17):3180–3186.  https://doi.org/10.1002/adsc.201200748 CrossRefGoogle Scholar
  70. Narayanan R, El-Sayed MA (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4(7):1343–1348.  https://doi.org/10.1021/nl0495256 CrossRefGoogle Scholar
  71. Orilall MC, Matsumoto F, Zhou Q, Sai H, Abruna HD, DiSalvo FJ, Wiesner U (2009) One-pot synthesis of platinum-based nanoparticles incorporated into mesoporous niobium oxide−carbon composites for fuel cell electrodes. J Am Chem Soc 131(26):9389–9395.  https://doi.org/10.1021/ja903296r CrossRefGoogle Scholar
  72. Osgood H, Devaguptapu SV, Xu H, Cho J, Wu G (2016) Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 11(5):601–625.  https://doi.org/10.1016/j.nantod.2016.09.001 CrossRefGoogle Scholar
  73. Osmieri L, Videla AHM, Armandi M, Specchia S (2016) Influence of different transition metals on the properties of Me–N–C (Me= Fe, Co, Cu, Zn) catalysts synthesized using SBA-15 as tubular nano-silica reactor for oxygen reduction reaction. Int J Hydrog Energy 41(47):22570–22588.  https://doi.org/10.1016/j.ijhydene.2016.05.223 CrossRefGoogle Scholar
  74. Ou DR, Mori T, Fugane K, Togasaki H, Ye F, Drennan J (2011) Stability of ceria supports in PtCeOx/C catalysts. J Phys Chem C 115(39):19239–19245.  https://doi.org/10.1021/jp205640k CrossRefGoogle Scholar
  75. Park CS, Kim KS, Park YJ (2013) Carbon-sphere/Co3O4 nanocomposite catalysts for effective air electrode in Li/air batteries. J Power Sources 244:72–79.  https://doi.org/10.1016/j.jpowsour.2013.03.153 CrossRefGoogle Scholar
  76. Perez-Alonso FJ, McCarthy DN, Nierhoff A, Hernandez-Fernandez P, Strebel C, Stephens IE, Nielsen JH, Chorkendorff I (2012) The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew Chem Int Ed 51(19):4641–4643.  https://doi.org/10.1002/anie.201200586 CrossRefGoogle Scholar
  77. Phoka S, Laokul P, Swatsitang E, Promarak V, Seraphin S, Maensiri S (2009) Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. Mater Chem Phys 115(1):423–428.  https://doi.org/10.1016/j.matchemphys.2008.12.031 CrossRefGoogle Scholar
  78. Podlovchenko BI, Kolyadko EA, Lu S (1994) Electroreduction of carbon dioxide on palladium electrodes at potentials higher than the reversible hydrogen potential. J Electroanal Chem 373(1–2):185–187.  https://doi.org/10.1016/0022-0728(94)03324-2 CrossRefGoogle Scholar
  79. Ramani S, Sarkar S, Vemuri V, Peter SC (2017) Chemically designed CeO2 nanoboxes boost the catalytic activity of Pt nanoparticles toward electro-oxidation of formic acid. J Mater Chem A 5(23):11572–11576.  https://doi.org/10.1039/c6ta06339j CrossRefGoogle Scholar
  80. Rao GR, Justin P, Meher SK (2011) Metal oxide promoted electrocatalysts for methanol oxidation. Catal Surv Jpn 15(4):221–229.  https://doi.org/10.1007/s10563-011-9124-x CrossRefGoogle Scholar
  81. Reddy BM, Bharali P, Saikia P, Khan A, Loridant S, Muhler M, Grünert W (2007) Hafnium doped ceria nanocomposite oxide as a novel redox additive for three-way catalysts. J Phys Chem C 111:1878–1881.  https://doi.org/10.1021/jp068531i CrossRefGoogle Scholar
  82. Reddy BM, Bharali P, Saikia P, Park S-E, van den Berg MWE, Muhler M, Grünert W (2008) Structural characterization and catalytic activity of nanosized CexM1-xO2 (M = Zr and Hf) mixed oxides. J Phys Chem C 112:11729–11737.  https://doi.org/10.1021/jp802674m CrossRefGoogle Scholar
  83. Sasaki K, Zhang L, Adzic RR (2008) Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys Chem Chem Phys 10(1):159–167.  https://doi.org/10.1039/B709893F CrossRefGoogle Scholar
  84. Selvaraj V, Grace AN, Alagar M (2009) Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes. J Colloid Interface Sci 333(1):254–262.  https://doi.org/10.1016/j.jcis.2009.01.020 CrossRefGoogle Scholar
  85. Shahid MM, Rameshkumar P, Basirun WJ, Juan JC, Huang NM (2017) Cobalt oxide nanocubes interleaved reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction in alkaline medium. Electrochim Acta 237:61–68.  https://doi.org/10.1016/j.electacta.2017.03.088 CrossRefGoogle Scholar
  86. Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484(7392):49–54.  https://doi.org/10.1038/nature10915 CrossRefGoogle Scholar
  87. Shan C, Martin ET, Peters DG, Zaleski JM (2017) Site-selective growth of AgPd nanodendrite-modified Au nanoprisms: high electrocatalytic performance for CO2 reduction. Chem Mater 29(14):6030–6043.  https://doi.org/10.1021/acs.chemmater.7b01813 CrossRefGoogle Scholar
  88. Shao MH, Liu P, Adzic RR (2006a) Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes. J Am Chem Soc 128(23):7408–7409.  https://doi.org/10.1021/ja061246s CrossRefGoogle Scholar
  89. Shao MH, Sasaki K, Adzic RR (2006b) Pd−Fe nanoparticles as electrocatalysts for oxygen reduction. J Am Chem Soc 128(11):3526–3527.  https://doi.org/10.1021/ja060167d CrossRefGoogle Scholar
  90. Shrestha S, Liu Y, Mustain WE (2011) Electrocatalytic activity and stability of Pt clusters on state-of-the-art supports: a review. Catal Rev Sci Eng 53(3):256–336.  https://doi.org/10.1080/01614940.2011.596430 CrossRefGoogle Scholar
  91. Silva JCM, De Souza RFB, Parreira LS, Neto ET, Calegaro ML, Santos MC (2010) Ethanol oxidation reactions using SnO2@Pt/C as an electrocatalyst. Appl Catal B Environ 99(1–2):265–271.  https://doi.org/10.1016/j.apcatb.2010.06.031 CrossRefGoogle Scholar
  92. Singh SB, Tandon PK (2014) Catalysis: a brief review on nano-catalyst. J Energy Chem Eng 2(3):106–115Google Scholar
  93. Son DN, Takahashi K (2012) Selectivity of palladium–cobalt surface alloy toward oxygen reduction reaction. J Phys Chem C 116(10):6200–6207.  https://doi.org/10.1021/jp2094615 CrossRefGoogle Scholar
  94. Song A, Yang W, Yang W, Sun G, Yin X, Gao L, Wang Y, Qin X, Shao G (2017) Facile synthesis of cobalt nanoparticles entirely encapsulated in slim nitrogen-doped carbon nanotubes as oxygen reduction catalyst. ACS Sustain Chem Eng 5(5):3973–3981.  https://doi.org/10.1021/acssuschemeng.6b03173 CrossRefGoogle Scholar
  95. Stalder CJ, Chao S, Wrighton MS (1984) Electrochemical reduction of aqueous bicarbonate to formate with high current efficiency near the thermodynamic potential at chemically derivatized electrodes. J Am Chem Soc 106(12):3673–3675.  https://doi.org/10.1021/ja00324a046 CrossRefGoogle Scholar
  96. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352.  https://doi.org/10.1038/35104620 CrossRefGoogle Scholar
  97. Suffredini HB, Tricoli V, Vatistas N, Avaca LA (2006) Electro-oxidation of methanol and ethanol using a Pt–RuO2/C composite prepared by the sol–gel technique and supported on boron-doped diamond. J Power Sources 158(1):124–128.  https://doi.org/10.1016/j.jpowsour.2005.09.040 CrossRefGoogle Scholar
  98. Sulaiman JE, Zhu S, Xing Z, Chang Q, Shao M (2017) Pt–Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction. ACS Catal 7(8):5134–5141.  https://doi.org/10.1021/acscatal.7b01435 CrossRefGoogle Scholar
  99. Sun Z, Wang X, Liu Z, Zhang H, Yu P, Mao L (2010) Pt−Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells. Langmuir 26(14):12383–12389.  https://doi.org/10.1021/la101060s CrossRefGoogle Scholar
  100. Szmant HH (1989) Organic building blocks of the chemical industry. Wiley, New York ISBN: 978-0-471-85545-3Google Scholar
  101. Uribe FA, Valerio JA, Garzon FH, Zawodzinski TA (2004) PEMFC reconfigured anodes for enhancing CO tolerance with air bleed. Electrochem Solid-State Lett 7(10):A376–A379.  https://doi.org/10.1149/1.1795633 CrossRefGoogle Scholar
  102. Vigier F, Rousseau S, Coutanceau C, Leger JM, Lamy C (2006) Electrocatalysis for the direct alcohol fuel cell. Top Catal 40(1–4):111–121.  https://doi.org/10.1007/s11244-006-0113-7 CrossRefGoogle Scholar
  103. Wang J, Gu H (2015) Novel metal nanomaterials and their catalytic applications. Molecules 20(9):17070–17092.  https://doi.org/10.3390/molecules200917070
  104. Wang X, Hu JM, Hsing IM (2004) Electrochemical investigation of formic acid electro-oxidation and its crossover through a nafion® membrane. J Electroanal Chem 562(1):73–80.  https://doi.org/10.1016/j.jelechem.2003.08.010 CrossRefGoogle Scholar
  105. Wang C, Daimon H, Onodera T, Koda T, Sun S (2008) A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew Chem Int Ed 47(19):3588–3591.  https://doi.org/10.1002/anie.200800073 CrossRefGoogle Scholar
  106. Wang JX, Inada H, Wu L, Zhu Y, Choi Y, Liu P, Zhou W-P, Adzic RR (2009a) Oxygen reduction on well-defined core−shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131(47):17298–17302.  https://doi.org/10.1021/ja9067645 CrossRefGoogle Scholar
  107. Wang D, Xie T, Li Y (2009b) Nanocrystals: solution-based synthesis and applications as nanocatalysts. Nano Res 2(1):30–46.  https://doi.org/10.1007/s12274-009-9007-x CrossRefGoogle Scholar
  108. Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, DiSalvo FJ, Abruna HD (2013) Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 12(1):81–87.  https://doi.org/10.1038/nmat3458 CrossRefGoogle Scholar
  109. Wang Y, Cui X, Chen L, Wei C, Cui F, Yao H, Shi J, Li Y (2014) One-step replication and enhanced catalytic activity for cathodic oxygen reduction of the mesostructured Co3O4/carbon composites. Dalton Trans 43(10):4163–4168.  https://doi.org/10.1039/c3dt53192a CrossRefGoogle Scholar
  110. Wang L, Zhai JJ, Jiang K, Wang JQ, Cai WB (2015) Pd–Cu/C electrocatalysts synthesized by one-pot polyol reduction toward formic acid oxidation: structural characterization and electrocatalytic performance. Int J Hydrog Energy 40(4):1726–1734.  https://doi.org/10.1016/j.ijhydene.2014.11.128 CrossRefGoogle Scholar
  111. Wang C, Zhao Z, Li X, Yan R, Wang J, Li A, Duan X, Wang J, Liu Y, Wang J (2017) Three-dimensional framework of graphene nanomeshes shell/Co3O4 synthesized as superior bifunctional electrocatalyst for zinc–air batteries. ACS Appl Mater Interfaces 9(47):41273–41283.  https://doi.org/10.1021/acsami.7b13290 CrossRefGoogle Scholar
  112. Yang L, Kinoshita S, Yamada T, Kanda S, Kitagawa H, Tokunaga M, Ishimoto T, Ogura T, Nagumo R, Miyamoto A, Koyama M (2010) A metal–organic framework as an electrocatalyst for ethanol oxidation. Angew Chem Int Ed 122(31):5476–5479.  https://doi.org/10.1002/ange.201000863 CrossRefGoogle Scholar
  113. Yang W, Salim J, Ma C, Ma Z, Sun C, Li J, Chen L, Kim Y (2013) Flowerlike Co3O4 microspheres loaded with copper nanoparticle as an efficient bifunctional catalyst for lithium–air batteries. Electrochem Commun 28:13–16.  https://doi.org/10.1016/j.elecom.2012.12.007 CrossRefGoogle Scholar
  114. Yin Z, Gao D, Yao S, Zhao B, Cai F, Lin L, Tang P, Zhai P, Wang G, Ma D, Bao X (2016) Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy 27:35–43.  https://doi.org/10.1016/j.nanoen.2016.06.035 CrossRefGoogle Scholar
  115. Yousaf AB, Imran M, Uwitonze N, Zeb A, Zaidi SJ, Ansari TM, Manzoor S (2017) Enhanced electrocatalytic performance of Pt3Pd1 alloys supported on CeO2/C for methanol oxidation and oxygen reduction reactions. J Phys Chem C 121(4):2069–2079.  https://doi.org/10.1021/acs.jpcc.6b11528 CrossRefGoogle Scholar
  116. Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182(1):124–132.  https://doi.org/10.1016/j.jpowsour.2008.03.075 CrossRefGoogle Scholar
  117. Zhang Z, More KL, Sun K, Wu Z, Li W (2011) Preparation and characterization of PdFe nanoleaves as electrocatalysts for oxygen reduction reaction. Chem Mater 23(6):1570–1577.  https://doi.org/10.1021/cm1034134 CrossRefGoogle Scholar
  118. Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136(5):1734–1737.  https://doi.org/10.1021/ja4113885 CrossRefGoogle Scholar
  119. Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z (2018) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci 5(1):1700275.  https://doi.org/10.1002/advs.201700275 CrossRefGoogle Scholar
  120. Zhao Z, Chen Z, Lu G (2017) Computational discovery of nickel-based catalysts for CO2 reduction to formic acid. J Phys Chem C 121(38):20865–20870.  https://doi.org/10.1021/acs.jpcc.7b06895 CrossRefGoogle Scholar
  121. Zhong CJ, Luo J, Njoki PN, Mott D, Wanjala B, Loukrakpam R, Lim S, Wang L, Bin Fang B, Xu Z (2008) Fuel cell technology: nano-engineered multimetallic catalysts. Energy Environ Sci 1(4):454–466.  https://doi.org/10.1039/b810734n CrossRefGoogle Scholar
  122. Zhou ZY, Kang X, Song Y, Chen S (2011) Butylphenyl-functionalized palladium nanoparticles as effective catalysts for the electrooxidation of formic acid. Chem Commun 47(21):6075–6077.  https://doi.org/10.1039/c1cc11235j CrossRefGoogle Scholar
  123. Zhu H, Zhang S, Guo S, Su D, Sun S (2013a) Synthetic control of FePtM nanorods (M= Cu, Ni) to enhance the oxygen reduction reaction. J Am Chem Soc 135(19):7130–7133.  https://doi.org/10.1021/ja403041g CrossRefGoogle Scholar
  124. Zhu H, Zhang S, Huang YX, Wu L, Sun S (2013b) Monodisperse MxFe3xO4 (M= Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett 13(6):2947–2951.  https://doi.org/10.1021/nl401325u CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chiranjita Goswami
    • 1
  • Bhugendra Chutia
    • 1
  • Pankaj Bharali
    • 1
    Email author
  1. 1.Department of Chemical SciencesTezpur UniversityNapaamIndia

Personalised recommendations