Advertisement

Application of Nanoparticles for Self-Cleaning Surfaces

  • Sivaraman SomasundaramEmail author
  • Vignesh KumaravelEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 23)

Abstract

Self-cleaning in one of the most significant applications in the recent years to repel the contaminants like dirt, toxic pollutants, and microbes from any kind of surface. Hydrophobic and hydrophilic coatings are commonly used to fabricate a self-cleaning surface. Nanoparticles play a vital role in the design of self-cleaning glasses/goggles, windows, paints, building materials, medical devices, fabrics, and corrosion resistance materials. The basic principles, various applications, and key findings of hydrophobic/super-hydrophobic and hydrophilic/super-hydrophilic coated substrates are briefly discussed in this chapter. The utilization of different self-cleaning products available in the market is also highlighted. Moreover, the future challenges are described to fabricate an eco-friendly, cost-effective, highly stable, and durable self-cleaning surface.

Keywords

Hydrophobic Hydrophilic Water contact angle Photocatalysis Nanoparticles 

Notes

Acknowledgments

Sivaraman Somasundaram is grateful to Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) for their financial grants from the Ministry of Trade Industry and Energy, Republic of Korea (No.20163010012200).

References

  1. Abidi N, Cabrales L, Hequet E (2009) Functionalization of a cotton fabric surface with titania nanosols: applications for self-cleaning and UV-protection properties. ACS Appl Mater Interfaces 1(10):2141–2146.  https://doi.org/10.1021/am900315t CrossRefGoogle Scholar
  2. Afzal S, Daoud WA, Langford SJ (2014) Superhydrophobic and photocatalytic self-cleaning cotton. J Mater Chem A 2(42):18005–18011.  https://doi.org/10.1039/C4TA02764G CrossRefGoogle Scholar
  3. Amezaga-Madrid P, Nevarez-Moorillon GV, Orrantia-Borunda E, Miki-Yoshida M (2002) Photoinduced bactericidal activity against Pseudomonas aeruginosa by TiO2 based thin films. FEMS Microbiol Lett 211(2):183–188.  https://doi.org/10.1111/j.1574-6968.2002.tb11222.x CrossRefGoogle Scholar
  4. Bai C (2005) Ascent of nanoscience in China. Science 309(5731):61–63.  https://doi.org/10.1126/science.1115172 CrossRefGoogle Scholar
  5. Ball P (1999) Engineering shark skin and other solutions. Nature 400:507–509.  https://doi.org/10.1038/22883 CrossRefGoogle Scholar
  6. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176:396–428.  https://doi.org/10.1016/j.apcatb.2015.03.058 CrossRefGoogle Scholar
  7. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8.  https://doi.org/10.1007/s004250050096 CrossRefGoogle Scholar
  8. Blossey R (2003) Self-cleaning surfaces–virtual realities. Nat Mater 2(5):301–306.  https://doi.org/10.1038/nmat856 CrossRefGoogle Scholar
  9. Blossey R, Bosio A (2002) Contact line deposits on cDNA microarrays: a ‘twin-spot effect’. Langmuir 18(7):2952–2954.  https://doi.org/10.1021/la0114732 CrossRefGoogle Scholar
  10. Cao H, Zheng H, Yin J, Lu Y, Wu S, Wu X, Li B (2010) Mg(OH)2 complex nanostructures with superhydrophobicity and flame retardant effects. J Phys Chem C 114(41):17362–17368.  https://doi.org/10.1021/jp107216z CrossRefGoogle Scholar
  11. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRefGoogle Scholar
  12. Chen J, Poon CS (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build Environ 44(9):1899–1906.  https://doi.org/10.1016/j.buildenv.2009.01.002 CrossRefGoogle Scholar
  13. Chen H, Yuan AQ, Tang JX, Gong HF, Liu YJ, Wang ZX, Shi P, Zhang JD, Chen X (2007) A novel preparation of polystyrene film with a superhydrophobic surface using a template method. J Phys D Appl Phys 40(11):3485.  https://doi.org/10.1088/0022-3727/40/11/033 CrossRefGoogle Scholar
  14. Chun HY, Park SS, You SH, Kang GH, Bae WT, Kim KW, Park JE, Öztürk A, Shin D (2009) Preparation of a transparent hydrophilic TiO2 thin film photocatalyst. J Ceram Process Res 10(2):219–223Google Scholar
  15. Coulson SR, Woodward I, Badyal JP, Brewer SA, Willis C (2000) Super-repellent composite fluoropolymer surfaces. J Phys Chem B 104(37):8836–8840.  https://doi.org/10.1021/jp0000174 CrossRefGoogle Scholar
  16. Dai YA, Chang HC, Lai KY, Lin CA, Chung RJ, Lin GR, He JH (2010) Subwavelength Si nanowire arrays for self-cleaning antireflection coatings. J Mater Chem 20(48):10924–10930.  https://doi.org/10.1039/C0JM00524J CrossRefGoogle Scholar
  17. Daoud WA, Xin JH, Zhang YH (2005) Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf Sci 599(1–3):69–75.  https://doi.org/10.1016/j.susc.2005.09.038 CrossRefGoogle Scholar
  18. Deegan RD, Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA et al (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829.  https://doi.org/10.1038/39827 CrossRefGoogle Scholar
  19. Duan Z, Zhu Y, Ren P, Jia J, Yang S, Zhao G, Xie Y, Zhang J (2018) Non-UV activated superhydrophilicity of patterned Fe-doped TiO2 film for anti-fogging and photocatalysis. Appl Surf Sci 452:165–173.  https://doi.org/10.1016/j.apsusc.2018.05.029 CrossRefGoogle Scholar
  20. Dunnill CW, Aiken ZA, Kafizas A, Pratten J, Wilson M, Morgan DJ, Parkin IP (2009) White light induced photocatalytic activity of sulfur-doped TiO2 thin films and their potential for antibacterial application. J Mater Chem 19(46):8747–8754.  https://doi.org/10.1039/B913793A CrossRefGoogle Scholar
  21. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2011) Oxygen rich titania: a dopant free, high temperature stable, and visible-light active anatase photocatalyst. Adv Funct Mater 21(19):3744–3752.  https://doi.org/10.1002/adfm.201100301 CrossRefGoogle Scholar
  22. Galkina OL, Sycheva A, Blagodatskiy А, Kaptay G, Katanaev VL, Seisenbaeva GA, Kessler VG, Agafonov AV (2014) The sol–gel synthesis of cotton/TiO2 composites and their antibacterial properties. Surf Coat Technol 253:171–179.  https://doi.org/10.1016/j.surfcoat.2014.05.033 CrossRefGoogle Scholar
  23. Ganesh VA, Raut HK, Nair AS, Ramakrishna S (2011) A review on self-cleaning coatings. J Mater Chem 21(41):16304–16322.  https://doi.org/10.1039/c1jm12523k CrossRefGoogle Scholar
  24. Gant RM, Abraham AA, Hou Y, Cummins BM, Grunlan MA, Coté GL (2010) Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors. Acta Biomater 6(8):2903–2910.  https://doi.org/10.1016/j.actbio.2010.01.039 CrossRefGoogle Scholar
  25. Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L (2007) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19(17):2213–2237.  https://doi.org/10.1002/adma.200601946 CrossRefGoogle Scholar
  26. Gould P (2003) Smart, clean surfaces. Mater Today 6(11):44–48.  https://doi.org/10.1016/S1369-7021(03)01131-3 CrossRefGoogle Scholar
  27. Guo Z, Liu W (2007) Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure. Plant Sci 172(6):1103–1112.  https://doi.org/10.1016/j.plantsci.2007.03.005 CrossRefGoogle Scholar
  28. Herminghaus S (2000) Roughness-induced non-wetting. Europhys Lett 52(2):165–170.  https://doi.org/10.1209/epl/i2000-00418-8 CrossRefGoogle Scholar
  29. Hu Y, Zhong H, Wang Y, Lu L, Yang H (2018) TiO2/antimony-doped tin oxide: highly water-dispersed nano composites with excellent IR insulation and super-hydrophilic property. Sol Energy Mater Sol Cells 174:499–508.  https://doi.org/10.1016/j.solmat.2017.09.027 CrossRefGoogle Scholar
  30. Joo J, Lee D, Yoo M, Jeon S (2009) ZnO nanorod-coated quartz crystals as self-cleaning thiol sensors for natural gas fuel cells. Sensors Actuators B Chem 138(2):485–490.  https://doi.org/10.1016/j.snb.2009.03.017 CrossRefGoogle Scholar
  31. Kapridaki C, Pinho L, Mosquera MJ, Maravelaki-Kalaitzaki P (2014) Producing photoactive, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions with application as self-cleaning coatings. Appl Catal B Environ 156:416–427.  https://doi.org/10.1016/j.apcatb.2014.03.042 CrossRefGoogle Scholar
  32. Karimi L, Zohoori S, Amini A (2014) Multi-wall carbon nanotubes and nano titanium dioxide coated on cotton fabric for superior self-cleaning and UV blocking. New Carbon Mater 29(5):380–385.  https://doi.org/10.1016/S1872-5805(14)60144-X CrossRefGoogle Scholar
  33. Ke S, Cheng X, Wang Q, Wang Y, Pan Z (2014) Preparation of a photocatalytic TiO2/ZnTiO3 coating on glazed ceramic tiles. Ceram Int 40(6):8891–8895.  https://doi.org/10.1016/j.ceramint.2014.01.027 CrossRefGoogle Scholar
  34. Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Phil Trans R Soc A 367(1893):1487–1509.  https://doi.org/10.1098/rsta.2009.0022 CrossRefGoogle Scholar
  35. Kwak G, Jung S, Yong K (2011) Multifunctional transparent ZnO nanorod films. Nanotechnology 22(11):115705.  https://doi.org/10.1088/0957-4484/22/11/115705 CrossRefGoogle Scholar
  36. Lee M-K, Park Y-C (2017) Super-hydrophilic anatase TiO2 thin film in-situ deposited by DC magnetron sputtering. Thin Solid Films 638:9–16.  https://doi.org/10.1016/j.tsf.2017.07.046 CrossRefGoogle Scholar
  37. Lee D, Rubner MF, Cohen RE (2006) All-nanoparticle thin-film coatings. Nano Lett 6(10):2305–2312.  https://doi.org/10.1021/nl061776m CrossRefGoogle Scholar
  38. Lee SG, Lee DY, Lim HS, Lee DH, Lee S, Cho K (2010) Switchable transparency and wetting of elastomeric smart windows. Adv Mater 22(44):5013–5017.  https://doi.org/10.1002/adma.201002320 CrossRefGoogle Scholar
  39. Li Y, Zhang J, Zhu S, Dong H, Jia F, Wang Z, Sun Z, Zhang L, Li Y, Li H, Xu W (2009) Biomimetic surfaces for high-performance optics. Adv Mater 21(46):4731–4734.  https://doi.org/10.1002/adma.200901335 CrossRefGoogle Scholar
  40. Li X, Du X, He J (2010a) Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles. Langmuir 26(16):13528–13534.  https://doi.org/10.1021/la1016824 CrossRefGoogle Scholar
  41. Li Y, Zhang J, Yang B (2010b) Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today 5(2):117–127.  https://doi.org/10.1016/j.nantod.2010.03.001 CrossRefGoogle Scholar
  42. Li C, Sun Y, Cheng M, Sun S, Hu S (2018) Fabrication and characterization of a TiO2/polysiloxane resin composite coating with full-thickness super-hydrophobicity. Chem Eng J 333:361–369.  https://doi.org/10.1016/j.cej.2017.09.165 CrossRefGoogle Scholar
  43. Lin CA, Tsai ML, Wei WR, Lai KY, He JH (2016) Packaging glass with a hierarchically nanostructured surface: a universal method to achieve self-cleaning omnidirectional solar cells. ACS Nano 10(1):549–555.  https://doi.org/10.1021/acsnano.5b05564 CrossRefGoogle Scholar
  44. Liu K, Jiang L (2012) Bio-inspired self-cleaning surfaces. Annu Rev Mater Res 42:231–263.  https://doi.org/10.1146/annurev-matsci-070511-155046 CrossRefGoogle Scholar
  45. Liu D, Wang Q, Shen W, Wang D (2017) Self-cleaning antireflective coating with a hierarchical texture for light trapping in micromorph solar cells. J Mater Chem C 5:103–109.  https://doi.org/10.1039/C6TC03152H CrossRefGoogle Scholar
  46. Lu Y, Sathasivam S, Song J, Crick CR, Carmalt CJ, Parkin IP (2015) Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347(6226):1132–1135.  https://doi.org/10.1126/science.aaa0946 CrossRefGoogle Scholar
  47. Manca M, Cannavale A, De Marco L, Arico AS, Cingolani R, Gigli G (2009) Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol− gel processing. Langmuir 25(11):6357–6362.  https://doi.org/10.1021/la804166t CrossRefGoogle Scholar
  48. Marques PA, Trindade T, Neto CP (2006) Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method. Compos Sci Technol 66(7–8):1038–1044.  https://doi.org/10.1016/j.compscitech.2005.07.029 CrossRefGoogle Scholar
  49. Martines E, Seunarine K, Morgan H, Gadegaard N, Wilkinson CDW, Riehle MO (2005) Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett 5(10):2097–2103.  https://doi.org/10.1021/nl051435t CrossRefGoogle Scholar
  50. McHale G, Rowan SM, Newton MI, Banerjee MK (1998) Evaporation and the wetting of a low-energy solid surface. J Phys Chem B 102(11):1964–1967.  https://doi.org/10.1021/jp972552i CrossRefGoogle Scholar
  51. Mertens J, Hubert J, Vandencasteele N, Raes M, Terryn H, Reniers F (2017) Chemical and physical effect of SiO2 and TiO2 nanoparticles on highly hydrophobic fluorocarbon hybrid coatings synthesized by atmospheric plasma. Surf Coat Technol 315:274–282.  https://doi.org/10.1016/j.surfcoat.2017.02.040 CrossRefGoogle Scholar
  52. Midtdal K, Jelle BP (2013) Self-cleaning glazing products: a state-of-the-art review and future research pathways. Sol Energy Mater Sol Cells 109:126–141.  https://doi.org/10.1016/j.solmat.2012.09.034 CrossRefGoogle Scholar
  53. Mills A, Lee SK (2002) A web-based overview of semiconductor photochemistry-based current commercial applications. J Photochem Photobiol A Chem 152(1–3):233–247.  https://doi.org/10.1016/S1010-6030(02)00243-5 CrossRefGoogle Scholar
  54. Mills A, Lepre A, Elliott N, Bhopal S, Parkin IP, O’Neill SA (2003) Characterisation of the photocatalyst Pilkington Activ™: a reference film photocatalyst? J Photochem Photobiol A Chem 160(3):213–224.  https://doi.org/10.1016/S1010-6030(03)00205-3 CrossRefGoogle Scholar
  55. Min WL, Jiang B, Jiang P (2008) Bioinspired self-cleaning antireflection coatings. Adv Mater 20(20):3914–3918.  https://doi.org/10.1002/adma.200800791 CrossRefGoogle Scholar
  56. Min K, Choi KS, Jeon WJ, Lee DK, Oh S, Lee J, Choi JY, Yu HK (2018) Hierarchical Ag nanostructures on Sn-doped indium oxide nano-branches: super-hydrophobic surface for surface-enhanced Raman scattering. RSC Adv 8:12927–12932.  https://doi.org/10.1039/c8ra01510d CrossRefGoogle Scholar
  57. Montazer M, Pakdel E (2011) Functionality of nano titanium dioxide on textiles with future aspects: focus on wool. J Photochem Photobiol C Photochem Rev 12(4):293–303.  https://doi.org/10.1016/j.jphotochemrev.2011.08.005 CrossRefGoogle Scholar
  58. Murugan K, Subasri R, Rao TN, Gandhi AS, Murty BS (2013) Synthesis, characterization and demonstration of self-cleaning TiO2 coatings on glass and glazed ceramic tiles. Prog Org Coat 76(12):1756–1760.  https://doi.org/10.1016/j.porgcoat.2013.05.012 CrossRefGoogle Scholar
  59. Nakata K, Sakai M, Ochiai T, Murakami T, Takagi K, Fujishima A (2011) Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles. Langmuir 27(7):3275–3278.  https://doi.org/10.1021/la200438p CrossRefGoogle Scholar
  60. Nishimoto S, Bhushan B (2013) Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv 3(3):671–690.  https://doi.org/10.1039/C2RA21260A CrossRefGoogle Scholar
  61. Pakdel E, Daoud WA, Wang X (2013) Self-cleaning and superhydrophilic wool by TiO2/SiO2 nanocomposite. Appl Surf Sci 275:397–402.  https://doi.org/10.1016/j.apsusc.2012.10.141 CrossRefGoogle Scholar
  62. Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414:33–34.  https://doi.org/10.1038/3510218 CrossRefGoogle Scholar
  63. Parkin IP, Palgrave RG (2005) Self-cleaning coatings. J Mater Chem 15(17):1689–1695.  https://doi.org/10.1039/b412803f CrossRefGoogle Scholar
  64. Pasqui D, Barbucci R (2014) Synthesis, characterization and self cleaning properties of titania nanoparticles grafted on polyester fabrics. J Photochem Photobiol A Chem 274:1–6.  https://doi.org/10.1016/j.jphotochem.2013.08.017 CrossRefGoogle Scholar
  65. Qi K, Daoud WA, Xin JH, Mak CL, Tang W, Cheung WP (2006) Self-cleaning cotton. J Mater Chem 16(47):4567–4574.  https://doi.org/10.1039/B610861J CrossRefGoogle Scholar
  66. Qi K, Wang X, Xin JH (2011) Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide. Text Res J 81(1):101–110.  https://doi.org/10.1177/0040517510383618 CrossRefGoogle Scholar
  67. Qi Y, Xiang B, Tan W, Zhang J (2017) Hydrophobic surface modification of TiO2 nanoparticles for production of acrylonitrile-styrene-acrylate terpolymer/TiO2 composited cool materials. Appl Surf Sci 419:213–223.  https://doi.org/10.1016/j.apsusc.2017.04.234 CrossRefGoogle Scholar
  68. Radeka M, Markov S, Lončar E, Rudić O, Vučetić S, Ranogajec J (2014) Photocatalytic effects of TiO2 mesoporous coating immobilized on clay roofing tiles. J Eur Ceram Soc 34(1):127–136.  https://doi.org/10.1016/j.jeurceramsoc.2013.07.010 CrossRefGoogle Scholar
  69. Radetić M (2013) Functionalization of textile materials with TiO2 nanoparticles. J Photochem Photobiol C Photochem Rev 16:62–76.  https://doi.org/10.1016/j.jphotochemrev.2013.04.002 CrossRefGoogle Scholar
  70. Ramaratnam K, Tsyalkovsky V, Klep V, Luzinov I (2007) Ultrahydrophobic textile surface via decorating fibers with monolayer of reactive nanoparticles and non-fluorinated polymer. Chem Commun 43:4510–4512.  https://doi.org/10.1039/B709429A CrossRefGoogle Scholar
  71. Roy P, Dey T, Lee K, Kim D, Fabry B, Schmuki P (2010) Size-selective separation of macromolecules by nanochannel titania membrane with self-cleaning (declogging) ability. J Am Chem Soc 132(23):7893–7895.  https://doi.org/10.1021/ja102712j CrossRefGoogle Scholar
  72. Sadhu S, Gupta P, Poddar P (2017) Physical mechanism behind enhanced photoelectrochemical and photocatalytic properties of superhydrophilic assemblies of 3D-TiO2 microspheres with arrays of oriented, single-crystalline TiO2 nanowires as building blocks deposited on fluorine-doped tin oxide. ACS Appl Mater Interfaces 9:11202–11211.  https://doi.org/10.1021/acsami.6b15420 CrossRefGoogle Scholar
  73. Saharudin KA, Basiron N, Chun LK, Sreekantan S, Kumaravel V, Abdullah TK, Ahmad ZA (2018) Improved super-hydrophobicity of eco-friendly coating from palm oil fuel ash (POFA) waste. Surf Coat Technol 337:126–135.  https://doi.org/10.1016/j.surfcoat.2017.11.070 CrossRefGoogle Scholar
  74. Shafrin EG, Zisman WA (1964) In: Fowkes FM (ed) Contact angle, wettability and adhesion, advances in chemistry series, vol 43., Chapter-9. American Chemical Society, Washington, DC, pp 145–167.  https://doi.org/10.1021/ba-1964-0043.ch009. isbn:9780841200449
  75. Smitha VS, Manjumol KA, Baiju KV, Ghosh S, Perumal P, Warrier KG (2010) Sol–gel route to synthesize titania-silica nano precursors for photoactive particulates and coatings. J Sol-Gel Sci Technol 54(2):203–211.  https://doi.org/10.1007/s10971-010-2178-9 CrossRefGoogle Scholar
  76. Song YY, Schmidt-Stein F, Berger S, Schmuki P (2010) TiO2 nano test tubes as a self-cleaning platform for high-sensitivity immunoassays. Small 6(11):1180–1184.  https://doi.org/10.1002/smll.200902116 CrossRefGoogle Scholar
  77. Spasiano D, Marotta R, Malato S, Fernandez-Ibanez P, Di Somma I (2015) Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications: a comprehensive approach. Appl Catal B Environ 170:90–123.  https://doi.org/10.1016/j.apcatb.2014.12.050 CrossRefGoogle Scholar
  78. Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D, Chen Y (2005) Artificial lotus leaf by nanocasting. Langmuir 21(19):8978–8981.  https://doi.org/10.1021/la050316q CrossRefGoogle Scholar
  79. Takata Y, Hidaka S, Cao JM, Nakamura T, Yamamoto H, Masuda M, Ito T (2005) Effect of surface wettability on boiling and evaporation. Energy 30(2–4):209–220.  https://doi.org/10.1016/j.energy.2004.05.004 CrossRefGoogle Scholar
  80. Tricoli A, Righettoni M, Pratsinis SE (2009) Anti-fogging nanofibrous SiO2 and nanostructured SiO2−TiO2 films made by rapid flame deposition and in situ annealing. Langmuir 25(21):12578–12584.  https://doi.org/10.1021/la901759p CrossRefGoogle Scholar
  81. Tung WS, Daoud WA (2011) Self-cleaning fibers via nanotechnology: a virtual reality. J Mater Chem 21(22):7858–7869.  https://doi.org/10.1039/C0JM03856C CrossRefGoogle Scholar
  82. Uddin MJ, Cesano F, Bonino F, Bordiga S, Spoto G, Scarano D, Zecchina A (2007) Photoactive TiO2 films on cellulose fibres: synthesis and characterization. J Photochem Photobiol A Chem 189(2–3):286–294.  https://doi.org/10.1016/j.jphotochem.2007.02.015 CrossRefGoogle Scholar
  83. Von Baeyer HC (2000) The lotus effect. The sciences. J N Y Acad Sci 40(1):12–15.  https://doi.org/10.1002/j.2326-1951.2000.tb03461.x CrossRefGoogle Scholar
  84. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388(6641):431–432.  https://doi.org/10.1038/41233 CrossRefGoogle Scholar
  85. Wang R, Wang X, Xin JH (2009) Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts. ACS Appl Mater Interfaces 2(1):82–85.  https://doi.org/10.1021/am900588s CrossRefGoogle Scholar
  86. Wang JJ, Wang DS, Wang J, Zhao WL, Wang CW (2011) High transmittance and superhydrophilicity of porous TiO2/SiO2 bi-layer films without UV irradiation. Surf Coat Technol 205(12):3596–3599.  https://doi.org/10.1016/j.surfcoat.2010.12.033 CrossRefGoogle Scholar
  87. Wang X, He Y, Liu X, Zhu J (2017) Synthesis of hierarchical flower-like particles and its application as super-hydrophobic coating. Powder Technol 319:408–414.  https://doi.org/10.1016/j.powtec.2017.07.005 CrossRefGoogle Scholar
  88. Wang X, Liu J, He Y, Wang Y (2018) Selective laser melting of ink-printed (SLM-IP) copper (Cu) nanoparticles (NPs) for facile controllable fabrication of super-hydrophobic surface. Surf Coat Technol 347:84–91.  https://doi.org/10.1016/j.surfcoat.2018.04.080 CrossRefGoogle Scholar
  89. Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K (1999) Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351(1–2):260–263.  https://doi.org/10.1016/S0040-6090(99)00205-9 CrossRefGoogle Scholar
  90. Wen M, Wang L, Zhang M, Jiang L, Zheng Y (2014) Antifogging and icing-delay properties of composite micro-and nanostructured surfaces. ACS Appl Mater Interfaces 6(6):3963–3968.  https://doi.org/10.1021/am405232e CrossRefGoogle Scholar
  91. Wenzel RN (1936a) Surface roughness and contact angle. Ind Eng Chem 28(8):1466–1467CrossRefGoogle Scholar
  92. Wenzel RN (1936b) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994CrossRefGoogle Scholar
  93. Xie TH, Lin J (2007) Origin of photocatalytic deactivation of TiO2 film coated on ceramic substrate. J Phys Chem C 111(27):9968–9974.  https://doi.org/10.1021/jp072334h CrossRefGoogle Scholar
  94. Xu Q, Zhao Q, Zhu X, Cheng L, Bai S, Wang Z, Meng L, Qin Y (2016) A new kind of transparent and self-cleaning film for solar cells. Nanoscale 8:17747–17751.  https://doi.org/10.1039/C6NR03537J CrossRefGoogle Scholar
  95. Xue M, Peng N, Ou J, Wang F, Li X, Li W (2015) Hierarchically nanostructured CeO2 films with superhydrophilicity and corrosion resistance by coupling of surface topography and oxygen vacancies. Mater Chem Phys 160:406–412.  https://doi.org/10.1016/j.matchemphys.2015.05.007 CrossRefGoogle Scholar
  96. Yaghoubi H, Taghavinia N, Alamdari EK (2010) Self cleaning TiO2 coating on polycarbonate: surface treatment, photocatalytic and nanomechanical properties. Surf Coat Technol 204(9–10):1562–1568.  https://doi.org/10.1016/j.surfcoat.2009.09.085 CrossRefGoogle Scholar
  97. Yang Y, Li J, Wang H, Song X, Wang T, He B, Liang X, Ngo HH (2011) An electrocatalytic membrane reactor with self-cleaning function for industrial wastewater treatment. Angew Chem Int Ed 50(9):2148–2150.  https://doi.org/10.1002/anie.201005941 CrossRefGoogle Scholar
  98. Yuan L, Dai J, Fan X, Song T, Tao YT, Wang K, Xu Z, Zhang J, Bai X, Lu P, Chen J (2011) Self-cleaning flexible infrared nanosensor based on carbon nanoparticles. ACS Nano 5(5):4007–4013.  https://doi.org/10.1021/nn200571q CrossRefGoogle Scholar
  99. Yuranova T, Mosteo R, Bandara J, Laub D, Kiwi J (2006) Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. J Mol Catal A Chem 244(1–2):160–167.  https://doi.org/10.1016/j.molcata.2005.08.059
  100. Zhang L, Dillert R, Bahnemann D, Vormoor M (2012) Photo-induced hydrophilicity and self-cleaning: models and reality. Energy Environ Sci 5(6):7491–7507.  https://doi.org/10.1039/c2ee03390a CrossRefGoogle Scholar
  101. Zhang P, Tian J, Xu R, Ma G (2013) Hydrophilicity, photocatalytic activity and stability of tetraethyl orthosilicate modified TiO2 film on glazed ceramic surface. Appl Surf Sci 266:141–147.  https://doi.org/10.1016/j.apsusc.2012.11.117 CrossRefGoogle Scholar
  102. Zhong H, Hu Y, Wang Y, Yang H (2017) TiO2/silane coupling agent composed of two layers structure: a super-hydrophilic self-cleaning coating applied in PV panels. Appl Energy 204:932–938.  https://doi.org/10.1016/j.apenergy.2017.04.057 CrossRefGoogle Scholar
  103. Zhou S, Wang F, Balachandran S, Li G, Zhang X, Wang R, Liu P, Ding Y, Zhang S, Yang M (2017) Facile fabrication of hybrid PA6-decorated TiO2 fabrics with excellent photocatalytic, antibacterial, UV light-shielding, and super hydrophobic properties. RSC Adv 7:52375–52381.  https://doi.org/10.1039/C7RA09613E CrossRefGoogle Scholar
  104. Zhu J, Hsu CM, Yu Z, Fan S, Cui Y (2010) Nanodome solar cells with efficient light management and self-cleaning. Nano Lett 10(6):1979–1984.  https://doi.org/10.1021/nl9034237 CrossRefGoogle Scholar
  105. Zhu J, Cao Y, He J (2014) Facile fabrication of transparent, broadband photoresponse, self-cleaning multifunctional graphene–TiO2 hybrid films. J Colloid Interf Sci 420:119–126.  https://doi.org/10.1016/j.jcis.2014.01.015 CrossRefGoogle Scholar
  106. Zorba V, Chen X, Mao SS (2010) Superhydrophilic TiO2 surface without photocatalytic activation. Appl Phys Lett 96(9):093702.  https://doi.org/10.1063/1.3291667 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryKongju National UniversityGongjuRepublic of Korea
  2. 2.Department of Environmental Science, School of ScienceInstitute of Technology SligoAsh lane, Co. SligoIreland

Personalised recommendations