On the Passivity of the Delay-Rational Green’s-Function-Based Model for Transmission Lines

  • Giulio Antonini
  • Maria De Lauretis
  • Jonas Ekman
  • Elena Miroshnikova
Conference paper
Part of the Trends in Mathematics book series (TM)


In this paper, we study the delay-rational Green’s-function-based (DeRaG) model for transmission lines. This model is described in terms of impedance representation and it contains a rational and a hyperbolic part. The crucial property of transmission lines models is to be passive. The passivity of the rational part has been studied by the authors in a previous work. Here, we extend the results to the rational part of the DeRaG model. Moreover, we prove the passivity of the hyperbolic part.


  1. 1.
    R. Achar, M.S. Nakhla, Simulation of high-speed interconnects. Proc. IEEE. 89(5), 693–728 (2001)CrossRefGoogle Scholar
  2. 2.
    G. Antonini, A dyadic Green’s function based method for the transient analysis of lossy and dispersive multiconductor transmission lines. IEEE Trans. Microw. Theory Tech. 56(4), 880–895 (2008)CrossRefGoogle Scholar
  3. 3.
    M. De Lauretis, Transmission line theory for cable modeling: a delay-rational model based on Green’s functions. Licentiate thesis, Luleå tekniska universitet (2016)Google Scholar
  4. 4.
    M. De Lauretis, J. Ekman, G. Antonini, Delayed impedance models of two-conductor transmission lines, in 2014 International Symposium on Electromagnetic Compatibility (EMC Europe), 1 September 2014 (IEEE, Piscataway, 2014), pp. 670–675Google Scholar
  5. 5.
    M. De Lauretis, G. Antonini, J. Ekman, A delay-rational model of lossy multiconductor transmission lines with frequency-independent per-unit-length parameters. IEEE Trans. Electromagn. Compat. 57(5), 1235–1245 (2015)CrossRefGoogle Scholar
  6. 6.
    M. De Lauretis, G. Antonini, J. Ekman, A SPICE realization of the delay-rational Green’s-function-based method for multiconductor transmission lines. IEEE Trans. Electromagn. Compat. 58(4), 1158–1168 (2016)CrossRefGoogle Scholar
  7. 7.
    M. De Lauretis, J. Ekman, G. Antonini, Delayed-rational Green’s-function-based method of transmission lines and the Heaviside condition, in Electrical Design of Advanced Packaging and Systems (EDAPS), 14 December 2016 (IEEE, Piscataway, 2016), pp. 143–145Google Scholar
  8. 8.
    H.W. Eves, Elementary Matrix Theory (Courier Corporation, North Chelmsford, 1966)zbMATHGoogle Scholar
  9. 9.
    N. Kottenstette, P.J. Antsaklis, Relationships between positive real, passive dissipative, & positive systems, in American Control Conference (ACC), 30 June 2010 (IEEE, Piscataway, 2010), pp. 409–416Google Scholar
  10. 10.
    L. Lombardi, G. Antonini, M. De Lauretis, J. Ekman, On the distortionless propagation in multiconductor transmission lines. IEEE Trans. Compon. Packag. Manuf. Technol. 8(4), 538–545 (2018)CrossRefGoogle Scholar
  11. 11.
    G. Miano, A. Maffucci, Transmission Lines and Lumped Circuits: Fundamentals and Applications (Academic, Cambridge, 2001)zbMATHGoogle Scholar
  12. 12.
    S. Nordebo, M. Gustafsson, D. Sjöberg, Passive approximation and optimization, in Progress in Electromagnetics Research Symposium (PIERS), Prague, 6–9 July 2015, p. 84Google Scholar
  13. 13.
    C.R. Paul, Analysis of Multiconductor Transmission Lines (Wiley, Hoboken, 2008)Google Scholar
  14. 14.
    P. Triverio, S. Grivet-Talocia, M.S. Nakhla, F.G. Canavero, R. Achar, Stability, causality, and passivity in electrical interconnect models. IEEE Trans. Adv. Packag. 30(4), 795–808 (2007)CrossRefGoogle Scholar
  15. 15.
    M.R. Wohlers, Lumped and Distributed Passive Networks: A Generalized and Advanced Viewpoint (Academic, New York, 2017)zbMATHGoogle Scholar
  16. 16.
    D.C. Youla, Theory and Synthesis of Linear Passive Time-Invariant Networks (Cambridge University Press, Cambridge, 2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giulio Antonini
    • 1
  • Maria De Lauretis
    • 2
  • Jonas Ekman
    • 2
  • Elena Miroshnikova
    • 2
  1. 1.Università degli Studi dell’AquilaL’AquilaItaly
  2. 2.Luleå University of TechnologyLuleåSweden

Personalised recommendations