Advertisement

Green and Neumann Functions for a Plane Degenerate Circular Domain

  • H. BegehrEmail author
  • S. Burgumbayeva
  • B. Shupeyeva
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

Harmonic Green and Neumann functions are constructed using the parqueting-reflection principle for a simply connected domain in the complex plane with two touching circles as the boundary.

References

  1. 1.
    M. Akel, Riemann-Hilbert problem for the Cauchy-Riemann operator in lens and lune. Complex Variables Elliptic Equ. 62, 1570–1588 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Akel, H. Begehr, Neumann function for a hyperbolic strip and a class of related plane domains. Math. Nachr. 290, 490–506 (2017).  https://doi.org/10.1002/mana.201500501 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ü. Aksoy, A.O. Celebi, A survey on boundary value problems for complex partial differential equations. Adv. Dyn. Syst. Appl. 5, 133–158 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    H. Begehr, Green function for a hyperbolic strip and a class of related plane domains. Appl. Anal. 93, 2370–2385 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Begehr, Fundamental solutions to the Laplacian in plane domains bounded by ellipses, in Proceedings of Mathematics and Computing, Third International Conference, ICMC 2017, Haldia, India, January 17–21, ed. by D. Giri, R.N. Mohapatra, H. Begehr, M.S. Obaidat. Communications in Computer and Information Science, vol. 655 (Springer, Singapore, 2017), pp. 293–311Google Scholar
  6. 6.
    H. Begehr, Green and Neumann functions for strips, in New Trends in Analysis and Interdisciplinary Applications. Proceedings of the 10th International ISAAC Congress, Macau, 2015, ed. by P. Dang, M. Ku, T. Qiao, L. Rodino. Trends in Mathematics Research Perspectives (Birkhäuser, Cham, 2017), pp. 89–95Google Scholar
  7. 7.
    H. Begehr, T. Vaitekhovich, Harmonic boundary value problems in half disc and half ring. Funct. Approx. Comment. Math. 40, 251–282 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    H. Begehr, T. Vaitekhovich, Green functions, reflections, and plane parqueting. Eur. Math. J. 1, 17–31 (2010); 2, 139–142 (2011)Google Scholar
  9. 9.
    H. Begehr, T. Vaitekhovich, Harmonic Dirichlet problem for some equilateral triangle. Complex Variables Elliptic Equ. 57, 185–196 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    H. Begehr, T. Vaitekhovich, Schwarz problem in lens and lune. Complex Variables Elliptic Equ. 59, 76–84 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Begehr, T. Vaitekhovich, The parqueting-reflection principle for constructing Green function, in Analytic Methods of Analysis and Differential Equations: AMADE-2012, ed. by S.V. Rogosin, M.V. Dubatovskaya (Cambridge Scientific Publishers, Cottenham, 2014), pp. 11–20Google Scholar
  12. 12.
    H. Begehr, M.-R. Costache, S. Tappert, T. Vaitekhovich, Harmonic Green and Neumann representations in a triangle, quarter-disc and octo-plane, in Progress in Analysis and Its Applications. Proceedings of 7th International ISAAC Congress, ed. by M. Ruzhansky, J. Wirth (World Scientific, Singapore, 2011), pp. 74–80Google Scholar
  13. 13.
    H. Begehr, S. Burgumbayeva, B. Shupeyeva. Remark on Robin problem for Poisson equation. Complex Variables Elliptic Equ. 62(10), 1589–1599 (2017). http://www.tandfonline.com/eprint/W534YxAEU3RUBZDQ7Kqe/full; http://doi.org/10.1080/17476933.2017.1303052 MathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Begehr, S. Burgumbayeva, B. Shupeyeva, Harmonic Green functions for a plane domain with two touching circles as boundary. Adv. Math. Model. Appl. 3(1), 18–29 (2018)Google Scholar
  15. 15.
    E. Gaertner, Basic complex boundary value problems in the upper half plane, Ph.D. thesis, FU Berlin, 2006. www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000002129
  16. 16.
    V.V. Mityushev, S.V. Rogosin, Constructive methods for linear and nonlinear boundary value problems for analytic functions: theory and applications. Chapman and Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 108 (Chapman and Hall/CRC, Boca Raton, 2000)Google Scholar
  17. 17.
    B. Shupeyeva, Harmonic boundary value problems in a quarter ring domain. Adv. Pure Appl. Math. 3, 393–419 (2012); 4, 103–105 (2013)Google Scholar
  18. 18.
    B. Shupeyeva, Some basic boundary value problems for complex partial differential equations in quarter ring and half hexagon, Ph.D. thesis, FU Berlin, 2013. www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000094596
  19. 19.
    N. Taghizadeh, V.S. Mohammadi, M.N. Foumani, Schwarz boundary value problem in half lens and half lune. Complex Variables Elliptic Equ. 61, 484–495 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    T.S. Vaitekhovich, Boundary value problems to second order complex partial differential equations in a ring domain. Šiauliai Math. Sem. 2(10), 117–146 (2007)MathSciNetzbMATHGoogle Scholar
  21. 21.
    T.S. Vaitekhovich, Boundary value problems to first order complex partial differential equations in a ring domain. Integral Transform. Spec. Funct. 19, 211–233 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    T. Vaitsiakhovich, Boundary value problems for complex partial differential equations in a ring domain, Ph.D. thesis, FU Berlin, 2008. www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000003859
  23. 23.
    Y. Wang, Boundary value problems for complex partial differential equations in fan-shaped domains, Ph.D. thesis, FU Berlin, 2011. www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000021359
  24. 24.
    Y.-F. Wang, Y.-J. Wang, Schwarz-type problem of nonhomogeneous Cauchy-Riemann equation on a triangle. J. Math. Anal. Appl. 377, 557–570 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutFreie Universität BerlinBerlinGermany
  2. 2.Faculty of Mechanics and MathematicsL.N. Gumilyov Eurasian National UniversityAstanaKazakhstan
  3. 3.Nazarbayev UniversityAstanaKazakhstan

Personalised recommendations