Navier–Stokes Transport Coefficients for Multicomponent Granular Gases. II. Simulations and Applications

  • Vicente GarzóEmail author
Part of the Soft and Biological Matter book series (SOBIMA)


The approximate expressions obtained in Chap.  5 for the Navier–Stokes transport coefficients of granular mixtures are compared first in this chapter with controlled numerical simulations of certain specific situations. In particular, the tracer diffusion and shear viscosity coefficients are obtained by numerically solving the Boltzmann and Enskog kinetic equations by means of the Direct Simulation Monte Carlo method. As in the case of monocomponent granular fluids, comparison between theory and simulations shows a good agreement over a wide range of values of the coefficients of restitution, density, and the parameters of the mixture (masses and sizes). Once the reliability of the theoretical results is assessed, some interesting applications of the Navier–Stokes granular hydrodynamic equations will be considered. First, the violation of the Einstein relation between the diffusion and mobility coefficients in granular fluids is quantified. Analysis indicates that this violation is essentially due to two independent reasons: the cooling of the reference homogeneous cooling state and the occurrence of different temperatures for the particle and surrounding fluid. Since the constitutive equations for mass and heat fluxes in granular mixtures are different from those obtained for ordinary mixtures, the (possible) violation of Onsager’s reciprocal relations among various transport coefficients is also assessed. Additionally, as with single granular fluids, a linear stability analysis of the Navier–Stokes equations with respect to homogeneous cooling state is performed to identify the unstable hydrodynamic modes. Theoretical predictions for instability associated with transversal shear modes (velocity vortices) are compared against MD simulations for conditions of practical interest. Excellent agreement between theory and simulation is found when mechanical properties of particles are relatively similar, while only good agreement occurs for disparate-mass binary mixtures. Finally, the chapter ends with an analysis of thermal diffusion segregation. Special attention is paid to the tracer limit situation where a segregation criterion is explicitly derived to explain the transition between Brazil-nut effect \(\Leftrightarrow \) reverse Brazil-nut effect.


  1. 1.
    Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Clarendon, Oxford (1994)Google Scholar
  2. 2.
    Résibois, P., de Leener, M.: Classical Kinetic Theory of Fluids. Wiley, New York (1977)zbMATHGoogle Scholar
  3. 3.
    Santos, A., Dufty, J.W.: Dynamics of a hard sphere granular impurity. Phys. Rev. Lett. 97, 058001 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Brey, J.J., Ruiz-Montero, M.J., Cubero, D., García-Rojo, R.: Self-diffusion in freely evolving granular gases. Phys. Fluids 12, 876–883 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    McLennan, J.A.: Introduction to Nonequilibrium Statistical Mechanics. Prentice-Hall, New Jersey (1989)Google Scholar
  6. 6.
    Garzó, V., Montanero, J.M.: Diffusion of impurities in a granular gas. Phys. Rev. E 69, 021301 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)zbMATHGoogle Scholar
  8. 8.
    Mason, E.A.: Transport properties of gases obeying a modified Buckingham potential. J. Chem. Phys. 22, 169–192 (1954)ADSCrossRefGoogle Scholar
  9. 9.
    López de Haro, M., Cohen, E.G.D.: The Enskog theory for multicomponent mixtures. III. Transport properties of dense binary mixtures with one tracer component. J. Chem. Phys. 80, 408–415 (1984)ADSCrossRefGoogle Scholar
  10. 10.
    Garzó, V., Vega Reyes, F.: Mass transport of impurities in a moderately dense granular gas. Phys. Rev. E 79, 041303 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Brilliantov, N.V., Pöschel, T.: Self-diffusion in granular gases. Phys. Rev. E 61, 1716–1721 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Garzó, V., Montanero, J.M.: Navier-Stokes transport coefficients of \(d\)-dimensional granular binary mixtures at low-density. J. Stat. Phys. 129, 27–58 (2007)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Montanero, J.M., Garzó, V.: Shear viscosity for a heated granular binary mixture at low density. Phys. Rev. E 67, 021308 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Garzó, V., Montanero, J.M.: Shear viscosity for a moderately dense granular binary mixture. Phys. Rev. E 68, 041302 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Montanero, J.M., Santos, A., Garzó, V.: DSMC evaluation of the Navier–Stokes shear viscosity of a granular fluid. In: Capitelli, M. (ed.) 24th International Symposium on Rarefied Gas Dynamics, vol. 762, pp. 797–802. AIP Conference Proceedings (2005)Google Scholar
  16. 16.
    Brey, J.J., Ruiz-Montero, M.J.: Simulation study of the Green-Kubo relations for dilute granular gases. Phys. Rev. E 70, 051301 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Dufty, J.W., Brey, J.J., Lutsko, J.F.: Diffusion in a granular fluid I. Theory. Phys. Rev. E 65, 051303 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Dufty, J.W., Garzó, V.: Mobility and diffusion in granular fluids. J. Stat. Phys. 105, 723–744 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Garzó, V., Hrenya, C.M., Dufty, J.W.: Enskog theory for polydisperse granular mixtures. II. Sonine polynomial approximation. Phys. Rev. E 76, 031304 (2007)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Garzó, V.: On the Einstein relation in a heated granular gas. Physica A 343, 105–126 (2004)Google Scholar
  21. 21.
    Garzó, V.: A note on the violation of the Einstein relation in a driven moderately dense granular gas. J. Stat. Mech. P05007 (2008)Google Scholar
  22. 22.
    Barrat, A., Loreto, V., Puglisi, A.: Temperature probes in binary granular gases. Physica A 66, 513–523 (2004)Google Scholar
  23. 23.
    Puglisi, A., Baldasarri, A., Vulpiani, A.: Violation of the Einstein relation in granular fluids: the role of correlations. J. Stat. Mech. P08016 (2007)Google Scholar
  24. 24.
    de Groot, S.R., Mazur, P.: Nonequilibrium Thermodynamics. Dover, New York (1984)zbMATHGoogle Scholar
  25. 25.
    Mitrano, P.P., Garzó, V., Hrenya, C.M.: Instabilities in granular binary mixtures at moderate densities. Phys. Rev. E 89, 020201(R) (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Garzó, V., Montanero, J.M., Dufty, J.W.: Mass and heat fluxes for a binary granular mixture at low density. Phys. Fluids 18, 083305 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Brey, J.J., Ruiz-Montero, M.J.: Shearing instability of a dilute granular mixture. Phys. Rev. E 87, 022210 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Garzó, V.: Stability of freely cooling granular mixtures at moderate densities. Chaos Solitons Fractals 81, 497–509 (2015)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Kudrolli, A.: Size separation in vibrated granular matter. Rep. Prog. Phys. 67, 209–247 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Daniels, K.E., Schröter, M.: Focus on granular segregation. New J. Phys. 15, 035017 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Rosato, A., Strandburg, K.J., Prinz, F., Swendsen, R.H.: Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038–1040 (1987)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Knight, J.B., Jaeger, H.M., Nagel, S.R.: Vibration-induced size separation in granular media: the convection connection. Phys. Rev. Lett. 70, 3728–3731 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    Duran, J., Rajchenbach, J., Clément, E.: Arching effect model for particle size segregation. Phys. Rev. Lett. 70, 2431–2434 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    Shinbrot, T., Muzzio, F.J.: Reverse buoyancy in shaken granular beds. Phys. Rev. Lett. 81, 4365–4368 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    Hong, D.C., Quinn, P.V., Luding, S.: Reverse Brazil nut problem: competition between percolation and condensation. Phys. Rev. Lett. 86, 3423–3426 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    Luding, S., Clément, E., Blumen, A., Rajchenbach, J., Duran, J.: Onset of convection in molecular dynamics simulations of grains. Phys. Rev. E 50, R1762–R1765 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    Möbius, M.E., Lauderdale, B.E., Nagel, S.R., Jaeger, H.M.: Brazil-nut effect: size separation of granular particles. Nature 414, 270 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    Goldhirsch, I., Ronis, D.: Theory of thermophoresis. I. General considerations and mode-coupling analysis. Phys. Rev. A 27, 1616–1634 (1983)ADSCrossRefGoogle Scholar
  39. 39.
    Goldhirsch, I., Ronis, D.: Theory of thermophoresis. II. Low-density behavior. Phys. Rev. A 27, 1635–1656 (1983)ADSCrossRefGoogle Scholar
  40. 40.
    Grew, K.E., Ibbs, T.L.: Thermal Diffusion in Gases. Cambridge University Press, Cambridge (1952)zbMATHGoogle Scholar
  41. 41.
    Maitland, G.C., Rigby, M., Smith, E.B., Wakeham, W.A.: Intermolecular Forces: Their Origin and Determination. Clarendon, Oxford (1981)Google Scholar
  42. 42.
    Jenkins, J.T., Yoon, D.K.: Segregation in binary mixtures under gravity. Phys. Rev. Lett. 88, 194301 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Garzó, V.: Thermal diffusion segregation in granular binary mixtures described by the Enskog equation. New J. Phys. 13, 055020 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Serero, D., Goldhirsch, I., Noskowicz, S.H., Tan, M.L.: Hydrodynamics of granular gases and granular gas mixtures. J. Fluid Mech. 554, 237–258 (2006)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Serero, D., Noskowicz, S.H., Tan, M.L., Goldhirsch, I.: Binary granular gas mixtures: theory, layering effects and some open questions. Eur. Phys. J. Spec. Top. 179, 221–247 (2009)CrossRefGoogle Scholar
  46. 46.
    Brito, R., Enríquez, H., Godoy, S., Soto, R.: Segregation induced by inelasticity in a vibrofluidized granular mixture. Phys. Rev. E 77, 061301 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    Brito, R., Soto, R.: Competition of Brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture. Eur. Phys. J. Spec. Top. 179, 207–219 (2009)CrossRefGoogle Scholar
  48. 48.
    Brey, J.J., Ruiz-Montero, M.J., Moreno, F.: Energy partition and segregation for an intruder in a vibrated granular system under gravity. Phys. Rev. Lett. 95, 098001 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    Brey, J.J., Ruiz-Montero, M.J., Moreno, F.: Hydrodynamic profiles for an impurity in an open vibrated granular gas. Phys. Rev. E 73, 031301 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    Garzó, V.: Segregation in granular binary mixtures: thermal diffusion. Europhys. Lett. 75, 521–527 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    Arnarson, B., Willits, J.T.: Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys. Fluids 10, 1324–1328 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    Yoon, D.K., Jenkins, J.T.: The influence of different species’ granular temperatures on segregation in a binary mixture of dissipative grains. Phys. Fluids 18, 073303 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    Garzó, V.: Segregation by thermal diffusion in moderately dense granular mixtures. Eur. Phys. J. E 29, 261–274 (2009)CrossRefGoogle Scholar
  54. 54.
    Schröter, M., Ulrich, S., Kreft, J., Swift, J.B., Swinney, H.L.: Mechanisms in the size segregation of a binary granular mixture. Phys. Rev. E 74, 011307 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    Galvin, J.E., Dahl, S.R., Hrenya, C.M.: On the role of non-equipartition in the dynamics of rapidly flowing granular mixtures. J. Fluid Mech. 528, 207–232 (2005)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx)Universidad de ExtremaduraBadajozSpain

Personalised recommendations