Navier–Stokes Transport Coefficients for Monocomponent Granular Gases. II. Simulations and Applications

  • Vicente GarzóEmail author
Part of the Soft and Biological Matter book series (SOBIMA)


The theoretical results derived in Chap.  3 for the Navier–Stokes transport coefficients are compared in this chapter with computer simulations carried out by several research groups. The comparison shows generally good agreement even in conditions of strong collisional dissipation. From this we appreciate the ability of kinetic theory to quantitatively capture the influence of dissipation on the transport properties of granular fluids. Once the reliability of granular kinetic theory has been assessed, several interesting applications of this theory are offered. First, a linear stability analysis of the Navier–Stokes hydrodynamic equations is performed to determine the critical size of the system beyond which the homogeneous cooling state becomes unstable. Theoretical predictions compare again very favorably with computer simulations for conditions of practical interest. As a second application, granular hydrodynamics is employed to obtain the temperature and density profiles of a granular fluid in a steady state with gravity. In agreement with simulations and experiments, the theory predicts that the temperature (density) profile as a function of the height of the system presents a minimum (maximum) whose value is determined by the coefficient of normal restitution of the gas. The chapter finishes with a short summary of the theoretical results derived at the level of the Navier–Stokes transport coefficients for other collisional models.


  1. 1.
    Garzó, V., Dufty, J.W.: Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 5895–5911 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Garzó, V., Santos, A., Montanero, J.M.: Modified Sonine approximation for the Navier-Stokes transport coefficients of a granular gas. Physica A 376, 94–107 (2007)Google Scholar
  3. 3.
    Noskowicz, S.H., Bar-Lev, O., Serero, D., Goldhirsch, I.: Computer-aided kinetic theory and granular gases. Europhys. Lett. 79, 60001 (2007)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Brey, J.J., Ruiz-Montero, M.J., Cubero, D.: On the validity of linear hydrodynamics for low-density granular flows described by the Boltzmann equation. Europhys. Lett. 48, 359–364 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Brey, J.J., Ruiz-Montero, M.J.: Simulation study of the Green-Kubo relations for dilute granular gases. Phys. Rev. E 70, 051301 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Brey, J.J., Ruiz-Montero, M.J., Maynar, P., García de Soria, M.I.: Hydrodynamic modes, Green-Kubo relations, and velocity correlations in dilute granular gases. J. Phys. Condens. Matter 17, S2489–S2502 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Montanero, J.M., Santos, A., Garzó, V.: DSMC evaluation of the Navier–Stokes shear viscosity of a granular fluid. In: Capitelli, M. (ed.) 24th International Symposium on Rarefied Gas Dynamics, vol. 762, pp. 797–802. AIP Conference Proceedings (2005)Google Scholar
  8. 8.
    Montanero, J.M., Santos, A.: Monte Carlo simulation method for the Enskog equation. Phys. Rev. E 54, 438–444 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Montanero, J.M., Santos, A.: Simulation of the Enskog equation à la Bird. Phys. Fluids 9, 2057–2060 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Montanero, J.M., Santos, A., Garzó, V.: First-order Chapman-Enskog velocity distribution function in a granular gas. Physica A 376, 75–93 (2007)Google Scholar
  11. 11.
    Goldhirsch, I., Zanetti, G.: Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619–1622 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    McNamara, S.: Hydrodynamic modes of a uniform granular medium. Phys. Fluids A 5, 3056–3069 (1993)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Brey, J.J., Dufty, J.W., Kim, C.S., Santos, A.: Hydrodynamics for granular flows at low density. Phys. Rev. E 58, 4638–4653 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Goldhirsch, I., Tan, M.L., Zanetti, G.: A molecular dynamical study of granular fluids I: the unforced granular gas in two dimensions. J. Sci. Comput. 8, 1–40 (1993)CrossRefGoogle Scholar
  15. 15.
    McNamara, S., Young, W.R.: Inelastic collapse in two dimensions. Phys. Rev. E 50, R28–R31 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    McNamara, S., Young, W.R.: Dynamics of a freely evolving, two-dimensional granular medium. Phys. Rev. E 53, 5089–5100 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    Deltour, P., Barrat, J.L.: Quantitative study of a freely cooling granular medium. J. Phys. I (France) 7, 137–151 (1997)CrossRefGoogle Scholar
  18. 18.
    Brito, R., Ernst, M.H.: Extension of Haff’s cooling law in granular flows. Europhys. Lett. 43, 497–502 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Luding, S.: Herrmann: cluster-growth in freely cooling granular media. Chaos 9, 673–680 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    Ben-Naim, E., Chen, S.Y., Doolen, G.D., Redner, S.: Shocklike dynamics of inelastic gases. Phys. Rev. Lett. 83, 4069–4072 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    Fullmer, W.D., Hrenya, C.M.: The clustering instability in rapid granular and gas-solid flows. Annu. Rev. Fluid Mech. 49, 485–510 (2017)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Résibois, P., de Leener, M.: Classical Kinetic Theory of Fluids. Wiley, New York (1977)zbMATHGoogle Scholar
  23. 23.
    Garzó, V.: Instabilities in a free granular fluid described by the Enskog equation. Phys. Rev. E 72, 021106 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    van Noije, T.P.C., Ernst, M.H.: Cahn-Hilliard theory for unstable granular fluids. Phys. Rev. E 61, 1765–1782 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Brey, J.J., Ruiz-Montero, M.J., Moreno, F.: Instability and spatial correlations in a dilute granular gas. Phys. Fluids 10, 2976–2982 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    Brey, J.J., Ruiz-Montero, M.J., Cubero, D.: Origin of density clustering in a freely evolving granular gas. Phys. Rev. E 60, 3150–3157 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    Soto, R., Mareschal, M., Malek Mansour, M.: Nonlinear analysis of the shearing instability in granular gases. Phys. Rev. E 62, 3836–3842 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    Mitrano, P.P., Dhal, S.R., Cromer, D.J., Pacella, M.S., Hrenya, C.M.: Instabilities in the homogeneous cooling of a granular gas: a quantitative assessment of kinetic-theory predictions. Phys. Fluids 23, 093303 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Kudrolli, A., Wolpert, M., Gollub, J.P.: Cluster formation due to collisions in granular material. Phys. Rev. Lett. 78, 1383–1386 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    Olafsen, J.S., Urbach, J.S.: Clustering, order, and collapse in a driven granular monolayer. Phys. Rev. Lett. 81, 4369–4372 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    Falcon, E., Wunenburger, R., Èvesque, P., Fauve, S., Chabot, C., Garrabos, Y., Beysens, D.: Cluster formation in a granular medium fluidized by vibrations in low gravity. Phys. Rev. Lett. 83, 440–443 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    Nie, X., Ben-Naim, E., Chen, S.: Dynamics of freely cooling granular gases. Phys. Rev. Lett. 89, 204301 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    Mitrano, P.P., Garzó, V., Hilger, A.M., Ewasko, C.J., Hrenya, C.M.: Assessing a hydrodynamic description for instabilities in highly dissipative, freely cooling granular gases. Phys. Rev. E 85, 041303 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Mitrano, P.P., Zenk, J.R., Benyahia, S., Galvin, J.E., Dhal, S.R., Hrenya, C.M.: Kinetic-theory predictions of clustering instabilities in granular flows: beyond the small-Knudsen-number regime. J. Fluid Mech. 738, R2 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Mitrano, P.P., Dhal, S.R., Hilger, A.M., Ewasko, C.J., Hrenya, C.M.: Dual role of friction in granular flows: attenuation versus enhancement of instabilities. J. Fluid Mech. 729, 484–495 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Clement, E., Rajchenbach, J.: Fluidization of a bidimensional powder. Europhys. Lett. 16, 133–138 (1991)ADSCrossRefGoogle Scholar
  37. 37.
    Yang, X., Huan, C., Candela, D., Mair, R.W., Walsworth, R.L.: Measurements of grain motion in a dense, three-dimensional granular fluid. Phys. Rev. Lett. 88, 044301 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    Huan, C., Yang, X., Candela, D., Mair, R.W., Walsworth, R.L.: NMR experiments on a three-dimensional vibrofluidized granular medium. Phys. Rev. E 69, 041302 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    Gallas, J.A.C., Herrmann, H.J., Sokolowski, S.: Molecular dynamics simulation of powder fluidizaton in two dimensions. Physica A 189, 437–446 (1992)Google Scholar
  40. 40.
    Lee, J.: Scaling behavior of granular particles in a vibrating box. Physica A 219, 305–326 (1995)Google Scholar
  41. 41.
    Helal, K., Biben, T., Hansen, J.P.: Local fluctuations in a fluidized granular medium. Physica A 240, 361–373 (1997)Google Scholar
  42. 42.
    McNamara, S., Barrat, J.L.: Energy flux into a fluidized granular medium at a vibrating wall. Phys. Rev. E 55, 7767–7770 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    Brey, J.J., Ruiz-Montero, M.J., Moreno, F.: Boundary conditions and normal state for a vibrated granular fluid. Phys. Rev. E 62, 5339–5346 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    Brey, J.J., Ruiz-Montero, M.J., Moreno, F.: Hydrodynamics of an open vibrated granular system. Phys. Rev. E 63, 061305 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    McNamara, S., Luding, S.: Energy nonequipartition in systems of inelastic rough spheres. Phys. Rev. E 58, 2247–2250 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)zbMATHGoogle Scholar
  47. 47.
    Lun, C.K.K., Savage, S.B., Jeffrey, D.J., Chepurniy, N.: Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223–256 (1984)ADSCrossRefGoogle Scholar
  48. 48.
    Jenkins, J.T., Richman, M.W.: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485–3493 (1985)ADSCrossRefGoogle Scholar
  49. 49.
    Jenkins, J.T., Richman, M.W.: Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Ration. Mech. Anal. 87, 355–377 (1985)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Goldhirsch, I., Noskowicz, S.H., Bar-Lev, O.: Nearly smooth granular gases. Phys. Rev. Lett. 95, 068002 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    Goldhirsch, I., Noskowicz, S.H., Bar-Lev, O.: Hydrodynamics of nearly smooth granular gases. J. Phys. Chem. B 109, 21449–21470 (2005)CrossRefGoogle Scholar
  52. 52.
    Lun, C.K.K.: Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539–559 (1991)ADSCrossRefGoogle Scholar
  53. 53.
    Kremer, G., Santos, A., Garzó, V.: Transport coefficients of a granular gas of inelastic rough hard spheres. Phys. Rev. E 90, 022205 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)zbMATHGoogle Scholar
  55. 55.
    Bridges, F.G., Hatzes, A., Lin, D.N.C.: Structure, stability and evolution of Saturn’s rings. Nature (London) 309, 333–335 (1984)ADSCrossRefGoogle Scholar
  56. 56.
    Sorace, C.M., Louge, M.Y., Crozier, M.D., Law, V.H.C.: High apparent adhesion energy in the breakdown of normal restitution for binary impacts of small spheres at low speed. Mech. Res. Comm. 36, 364–368 (2009)CrossRefGoogle Scholar
  57. 57.
    Grasselli, Y., Bossis, G., Goutallier, G.: Velocity-dependent restitution coefficient and granular cooling in microgravity. Europhys. Lett. 86, 60007 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    Brilliantov, N.V., Pöschel, T.: Hydrodynamics and transport coefficients for dilute granular gases. Phys. Rev. E 67, 061304 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    Brilliantov, N., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  60. 60.
    Brilliantov, N.V., Pöschel, T.: Velocity distribution in granular gases of viscoelastic particles. Phys. Rev. E 61, 5573–5587 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    Brilliantov, N.V., Salueña, C., Schwager, T., Pöschel, T.: Transient structures in a granular gas. Phys. Rev. Lett. 93, 134301 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    Hummel, M., Mazza, M.G.: Declustering in a granular gas as a finite-size effect. Phys. Rev. E 93, 022905 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx)Universidad de ExtremaduraBadajozSpain

Personalised recommendations