Kinetic Theory of Inelastic Hard Spheres

  • Vicente GarzóEmail author
Part of the Soft and Biological Matter book series (SOBIMA)


The present chapter provides a concise introduction to the kinetic theory of granular gases (namely, gases of hard spheres with inelastic collisions) at low and moderate densities. We briefly review first the dynamics of binary collisions for some of the models most widely used in the literature, and then we outline heuristically the derivation of the Boltzmann and Enskog kinetic equations for monocomponent granular gases. A connection with hydrodynamics is established where the corresponding macroscopic balance equations for the densities of mass, momentum and energy are exactly derived from the above kinetic equations with expressions for the momentum and heat fluxes and the cooling rate as functionals of the one-particle velocity distribution function. These kinetic equations are then extended to the interesting case of multicomponent granular mixtures. The complexity of the kernel of the Enskog-Boltzmann collision operator, however, prevents the possibility of obtaining exact results, and for this reason there is often a preference for kinetic models that are mathematically simpler than the original equations but capture their most relevant physical properties. Thus, the chapter ends with the construction of some kinetic models proposed in the literature of granular gases based on the popular BGK model for ordinary (elastic) gases.


  1. 1.
    Andreotti, B., Forterre, Y., Pouliquen, O.: Granular Media Between Fluid and Solid. Cambridge University Press, Cambridge (2013)zbMATHCrossRefGoogle Scholar
  2. 2.
    Heinrich, J.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Dufty, J.W.: Granular fluids. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, p. 00038. Springer (2009)Google Scholar
  4. 4.
    Duran, J.: Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials. Springer, New York (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Herminghaus, S.: Wet Granular Matter. A Truly Complex Fluid. World Scientific, Singapore (2013)CrossRefGoogle Scholar
  7. 7.
    Halsey, T., Mehta, A. (eds.): Challenges in Granular Physics. World Scientific, Singapore (2002)zbMATHGoogle Scholar
  8. 8.
    Campbell, C.S.: Rapid granular flows. Annu. Rev. Fluid Mech. 22, 57–92 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    Koch, D.L., Hill, R.J.: Inertial effects in suspensions and porous-media flows. Annu. Rev. Fluid Mech. 33, 619–647 (2001)ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Möbius, M.E., Lauderdale, B.E., Nagel, S.R., Jaeger, H.M.: Brazil-nut effect: size separation of granular particles. Nature 414, 270 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Naylor, M.A., Swift, M.R., King, P.J.: Air-driven Brazil nut effect. Phys. Rev. E 68, 012301 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Yan, X., Shi, Q., Hou, M., Lu, K., Chan, C.K.: Effects of air on the segregation of particles in a shaken granular bed. Phys. Rev. Lett. 91, 014302 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Sánchez, P., Swift, M.R., King, P.J.: Stripe formation in granular mixtures due to the differential influence of drag. Phys. Rev. Lett. 93, 184302 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Huthmann, M., Aspelmeier, T., Zippelius, A.: Granular cooling of hard needles. Phys. Rev. E 60, 654–659 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Viot, P., Talbot, J.: Thermalization of an anisotropic granular particle. Phys. Rev. E 69, 051106 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Piasecki, J., Talbot, J., Viot, P.: Angular velocity distribution of a granular planar rotator in a thermalized bath. Phys. Rev. E 75, 051307 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Cruz Hidalgo, R., Zuriguel, I., Maza, D., Pagonabarraga, I.: Role of particle shape on the stress propagation in granular packings. Phys. Rev. Lett. 103, 118001 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Talbot, J., Villemot, F.: Homogeneous cooling of hard ellipsoids. Granular Matter 14, 91–97 (2012)CrossRefGoogle Scholar
  19. 19.
    Dufty, J.W.: Statistical mechanics, kinetic theory, and hydrodynamics for rapid granular flow. J. Phys: Condens. Matter 12, A47–A56 (2000)ADSGoogle Scholar
  20. 20.
    Saitoh, K., Bodrova, A., Hayakawa, H., Brilliantov, N.V.: Negative normal restitution coefficient found in simulation of nanocluster collisions. Phys. Rev. Lett. 105, 238001 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Müller, P., Krengel, D., Pöschel, T.: Negative coefficient of normal restitution. Phys. Rev. E 85, 041306 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Khalil, N.: Generalized time evolution of the homogeneous cooling state of a granular with with positive and negative coefficient of normal restitution. J. Stat. Mech. 043201 (2018)Google Scholar
  23. 23.
    Kuninaka, H., Hayakawa, H.: Anomalous behavior of the coefficient of normal restitution in oblique impact. Phys. Rev. Lett. 93, 154301 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Goldhirsch, I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267–293 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Goldshtein, A., Shapiro, M.: Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid Mech. 282, 75–114 (1995)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Zippelius, A.: Granular gases. Physica A 369, 143–158 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Bridges, F.G., Hatzes, A., Lin, D.N.C.: Structure, stability and evolution of Saturn’s rings. Nature (London) 309, 333–335 (1984)ADSCrossRefGoogle Scholar
  28. 28.
    Ramírez, R., Pöschel, T., Brilliantov, N.V., Schwager, T.: Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E 60, 4465–4472 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    Brilliantov, N.V., Pöschel, T.: Hydrodynamics and transport coefficients for dilute granular gases. Phys. Rev. E 67, 061304 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Brilliantov, N.V., Pöschel, T.: Velocity distribution in granular gases of viscoelastic particles. Phys. Rev. E 61, 5573–5587 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    Dubey, A.K., Bodrova, A., Puri, S., Brilliantov, N.V.: Velocity distribution function and effective restitution coefficient for a granular gas of viscoelastic particles. Phys. Rev. E 87, 062202 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Montaine, M., Heckel, H., Kruelle, C., Schwager, T., Pöschel, T.: Coefficient of restitution as a fluctuating quantity. Phys. Rev. E 84, 041306 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Gunkelman, N., Serero, D., Pöschel, T.: Temperature of a granular gas with regard to the stochastic nature of particle interactions. New J. Phys. 15, 093030 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Gunkelman, N., Montaine, M., Pöschel, T.: Stochastic behavior of the coefficient of normal restitution. Phys. Rev. E 89, 022205 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Serero, D., Gunkelman, N., Pöschel, T.: Hydrodynamics of binary mixtures of granular gases with stochastic coefficient of restitution. J. Fluid Mech. 781, 595–621 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Melo, F., Umbanhowar, P.B., Swinney, H.L.: Hexagons, kinks, and disorder in oscillated granular layers. Phys. Rev. Lett. 75, 3838–3841 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    Umbanhowar, P.B., Melo, F., Swinney, H.L.: Localized excitations in a vertically vibrated granular layer. Nature 382, 793–796 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    Kudrolli, A., Wolpert, M., Gollub, J.P.: Cluster formation due to collisions in granular material. Phys. Rev. Lett. 78, 1383–1386 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    Pouliquen, O., Delour, J., Savage, S.B.: Fingering in granular flows. Nature 386, 816–817 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular fluids. Ann. Rev. Fluid Mech. 32, 55–91 (2000)ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    Mullin, T.: Coarsening of self-organized clusters in binary mixtures of particles. Phys. Rev. Lett. 78, 4741–4744 (1997)CrossRefGoogle Scholar
  42. 42.
    Mueth, D.M., Debregeas, G.F., Karczmar, G.S., Eng, P.J., Nagel, S.R., Jaeger, H.M.: Signatures of granular microstructure in dense shear flows. Nature 406, 385–389 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    Corwin, E.I., Jaeger, H.M., Nagel, S.R.: Structural signature of jamming in granular media. Nature 435, 1075–1078 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Brilliantov, N., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)zbMATHCrossRefGoogle Scholar
  45. 45.
    Mulero, A. (ed.): Theory and Simulation of Hard-Sphere Fluids and Related Systems. Lectures Notes in Physics, vol. 753. Springer, Berlin (2008)Google Scholar
  46. 46.
    Résibois, P., de Leener, M.: Classical Kinetic Theory of Fluids. Wiley, New York (1977)zbMATHGoogle Scholar
  47. 47.
    McLennan, J.A.: Introduction to Nonequilibrium Statistical Mechanics. Prentice-Hall, New Jersey (1989)Google Scholar
  48. 48.
    McNamara, S., Young, W.R.: Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids A 4, 496–504 (1991)ADSCrossRefGoogle Scholar
  49. 49.
    McNamara, S., Young, W.R.: Inelastic collapse in two dimensions. Phys. Rev. E 50, R28–R31 (1994)ADSCrossRefGoogle Scholar
  50. 50.
    McNamara, S., Young, W.R.: Dynamics of a freely evolving, two-dimensional granular medium. Phys. Rev. E 53, 5089–5100 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    Santos, A., Kremer, G., Garzó, V.: Energy production rates in fluid mixtures of inelastic rough hard spheres. Prog. Theor. Phys. Suppl. 184, 31–48 (2010)ADSzbMATHCrossRefGoogle Scholar
  52. 52.
    Huthmann, M., Zippelius, A.: Dynamics of inelastically colliding rough spheres: relaxation of translational and rotational energy. Phys. Rev. E 56, R6275–R6278 (1997)ADSCrossRefGoogle Scholar
  53. 53.
    McNamara, S., Luding, S.: Energy nonequipartition in systems of inelastic rough spheres. Phys. Rev. E 58, 2247–2250 (1998)ADSCrossRefGoogle Scholar
  54. 54.
    Kremer, G., Santos, A., Garzó, V.: Transport coefficients of a granular gas of inelastic rough hard spheres. Phys. Rev. E 90, 022205 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    Brilliantov, N.V., Sphan, F., Hertzsch, J.M., Pöschel, T.: Model for collisions in granular gases. Phys. Rev. E 53, 5382–5392 (1996)ADSCrossRefGoogle Scholar
  56. 56.
    Brilliantov, N.V., Pöschel, T.: Rolling friction of a viscous sphere on a hard plane. Europhys. Lett. 42, 511–516 (1998)ADSCrossRefGoogle Scholar
  57. 57.
    Kuwabara, G., Kono, K.: Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys. 26, 1230–1233 (1987)ADSCrossRefGoogle Scholar
  58. 58.
    Morgado, W.A.M., Oppenheim, I.: Energy dissipation for quasielastic granular particle collisions. Phys. Rev. E 55, 1940–1945 (1997)ADSCrossRefGoogle Scholar
  59. 59.
    Schwager, T., Pöschel, T.: Coefficient of normal restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E 57, 650–654 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    Duan, Y., Feng, Z.G.: Incorporation of velocity-dependent restitution coefficient and particle surface friction into kinetic theory for modeling granular flow cooling. Phys. Rev. E 96, 062907 (2017)ADSCrossRefGoogle Scholar
  61. 61.
    Sorace, C.M., Louge, M.Y., Crozier, M.D., Law, V.H.C.: High apparent adhesion energy in the breakdown of normal restitution for binary impacts of small spheres at low speed. Mech. Res. Comm. 36, 364–368 (2009)zbMATHCrossRefGoogle Scholar
  62. 62.
    Grasselli, Y., Bossis, G., Goutallier, G.: Velocity-dependent restitution coefficient and granular cooling in microgravity. Europhys. Lett. 86, 60007 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)zbMATHGoogle Scholar
  64. 64.
    Ferziger, J.H., Kaper, G.H.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)Google Scholar
  65. 65.
    Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)zbMATHCrossRefGoogle Scholar
  66. 66.
    Cercignani, C.: Mathematical Methods in Kinetic Theory. Plenum Press, New York (1990)zbMATHCrossRefGoogle Scholar
  67. 67.
    Garzó, V., Santos, A.: Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer Academic Publishers, Dordrecht (2003)zbMATHCrossRefGoogle Scholar
  68. 68.
    Brey, J.J., Dufty, J.W., Santos, A.: Dissipative dynamics for hard spheres. J. Stat. Phys. 87, 1051–1066 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    van Noije, T.P.C., Ernst, M.H., Brito, R.: Ring kinetic theory for an idealized granular gas. Physica A 251, 266–283 (1998)ADSCrossRefGoogle Scholar
  70. 70.
    Goldstein, H.: Classical Mechanics. Addison-Wesley, Massachusetts (1970)zbMATHGoogle Scholar
  71. 71.
    Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer-Verlag, New York (1994)zbMATHCrossRefGoogle Scholar
  72. 72.
    Cercignani, C.: Ludwig Boltzmann. The Man Who Trusted Atoms. Oxford University Press, Oxford (1998)zbMATHGoogle Scholar
  73. 73.
    Soto, R., Mareschal, M.: Statistical mechanics of fluidized granular media: short-range velocity correlations. Phys. Rev. E 63, 041303 (2001)ADSCrossRefGoogle Scholar
  74. 74.
    Soto, R., Piasecki, J., Mareschal, M.: Precollisional velocity correlations in a hard-disk fluid with dissipative collisions. Phys. Rev. E 64, 031306 (2001)ADSCrossRefGoogle Scholar
  75. 75.
    Paganobarraga, I., Trizac, E., van Noije, T.P.C., Ernst, M.H.: Randomly driven granular fluids: collisional statistics and short scale structure. Phys. Rev. E 65, 011303 (2002)ADSCrossRefGoogle Scholar
  76. 76.
    Rao, K.K., Nott, P.R.: An Introduction to Granular Flow. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  77. 77.
    Dorfman, J.R., van Beijeren, H.: The kinetic theory of gases. In: Berne, B.J. (ed.) Statistical Mechanics. Part B: Time-Dependent Processes, pp. 65–179. Plenum, New York (1977)Google Scholar
  78. 78.
    Uhlenbeck, G.E., van Ford, G.W.: In: de Boer, J., Uhlenbeck, G.E. (eds.) Studies in Statistical Mechanics, vol. 1, pp. 162–163. North-Holland, Amsterdam (1962)Google Scholar
  79. 79.
    de Groot, S.R., Mazur, P.: Nonequilibrium Thermodynamics. Dover, New York (1984)zbMATHGoogle Scholar
  80. 80.
    van Beijeren, H., Ernst, M.H.: The non-linear Enskog-Boltzmann equation. Phys. Lett. A 43, 367–368 (1973)ADSCrossRefGoogle Scholar
  81. 81.
    van Beijeren, H., Ernst, M.H.: The modified Enskog equation. Physica A 68, 437–456 (1973)Google Scholar
  82. 82.
    van Beijeren, H., Ernst, M.H.: The modified Enskog equation for mixtures. Physica A 70, 225–242 (1973)Google Scholar
  83. 83.
    van Beijeren, H., Ernst, M.H.: Kinetic theory of hard spheres. J. Stat. Phys. 21, 125–167 (1979)ADSCrossRefGoogle Scholar
  84. 84.
    López de Haro, M., Garzó, V.: On the Burnett equations for a dense monatomic hard-sphere gas. Physica A 197, 98–112 (1993)ADSCrossRefGoogle Scholar
  85. 85.
    Lutsko, J.F.: Model for the atomic-scale structure of the homogeneous cooling state of granular fluids. Phys. Rev. E 63, 061211 (2001)ADSCrossRefGoogle Scholar
  86. 86.
    Lutsko, J.F., Brey, J.J., Dufty, J.W.: Diffusion in a granular fluid. II. Simulation. Phys. Rev. E 65, 051304 (2002)ADSCrossRefGoogle Scholar
  87. 87.
    Dahl, S.R., Hrenya, C.M., Garzó, V., Dufty, J.W.: Kinetic temperatures for a granular mixture. Phys. Rev. E 66, 041301 (2002)ADSCrossRefGoogle Scholar
  88. 88.
    Mitrano, P.P., Dhal, S.R., Cromer, D.J., Pacella, M.S., Hrenya, C.M.: Instabilities in the homogeneous cooling of a granular gas: a quantitative assessment of kinetic-theory predictions. Phys. Fluids 23, 093303 (2011)ADSCrossRefGoogle Scholar
  89. 89.
    Mitrano, P.P., Garzó, V., Hrenya, C.M.: Instabilities in granular binary mixtures at moderate densities. Phys. Rev. E 89, 020201(R) (2014)ADSCrossRefGoogle Scholar
  90. 90.
    Garzó, V., Dufty, J.W.: Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 5895–5911 (1999)ADSCrossRefGoogle Scholar
  91. 91.
    Yang, X., Huan, C., Candela, D., Mair, R.W., Walsworth, R.L.: Measurements of grain motion in a dense, three-dimensional granular fluid. Phys. Rev. Lett. 88, 044301 (2002)ADSCrossRefGoogle Scholar
  92. 92.
    Huan, C., Yang, X., Candela, D., Mair, R.W., Walsworth, R.L.: NMR experiments on a three-dimensional vibrofluidized granular medium. Phys. Rev. E 69, 041302 (2004)ADSCrossRefGoogle Scholar
  93. 93.
    Garzó, V., Dufty, J.W., Hrenya, C.M.: Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport. Phys. Rev. E 76, 031303 (2007)Google Scholar
  94. 94.
    Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Clarendon, Oxford (1994)Google Scholar
  95. 95.
    Ernst, M.H.: Nonlinear model-Boltzmann equations and exact solutions. Phys. Rep. 78, 1–171 (1981)ADSMathSciNetCrossRefGoogle Scholar
  96. 96.
    Dufty, J.W., Santos, A., Brey, J.J.: Practical kinetic model for hard sphere dynamics. Phys. Rev. Lett. 77, 1270–1273 (1996)ADSCrossRefGoogle Scholar
  97. 97.
    Lutsko, J.F.: Approximate solution of the Enskog equation far from equilibrium. Phys. Rev. Lett. 78, 243–246 (1997)ADSCrossRefGoogle Scholar
  98. 98.
    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511–525 (1954)ADSzbMATHCrossRefGoogle Scholar
  99. 99.
    Welander, P.: On the temperature jump in a rarefied gas. Arkiv. Fysik. 7, 507–553 (1954)MathSciNetzbMATHGoogle Scholar
  100. 100.
    Holway, L.H.: New statistical models for kinetic theory: methods of construction. Phys. Fluids 9, 1658–1673 (1966)ADSCrossRefGoogle Scholar
  101. 101.
    Brey, J.J., Moreno, F., Dufty, J.W.: Model kinetic equation for low-density granular flow. Phys. Rev. E 54, 445–456 (1996)ADSCrossRefGoogle Scholar
  102. 102.
    van Noije, T.P.C., Ernst, M.H.: Velocity distributions in homogeneous granular fluids: the free and heated case. Granul. Matter 1, 57–64 (1998)CrossRefGoogle Scholar
  103. 103.
    Goldshtein, A., Shapiro, M.: Comment on “Model kinetic equation for low-density granular flow”. Phys. Rev. E 57, 6210–6211 (1998)ADSCrossRefGoogle Scholar
  104. 104.
    Brey, J.J., Moreno, F., Dufty, J.W.: Reply to “Comment on ‘Model kinetic equation for low-density granular flow”’. Phys. Rev. E 57, 6212–6213 (1998)ADSCrossRefGoogle Scholar
  105. 105.
    Ben-Naim, E., Krapivsky, P.L.: Multiscaling in inelastic collisions. Phys. Rev. E 61, R5–R8 (2000)ADSCrossRefGoogle Scholar
  106. 106.
    Bobylev, A.V., Carrillo, J.A., Gamba, I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98, 743–773 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Brey, J.J., Dufty, J.W., Santos, A.: Kinetic models for granular flow. J. Stat. Phys. 97, 281–322 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Santos, A., Astillero, A.: System of elastic hard spheres which mimics the transport properties of a granular gas. Phys. Rev. E 72, 031308 (2005)ADSCrossRefGoogle Scholar
  109. 109.
    Dufty, J.W., Baskaran, A., Zogaib, L.: Gaussian kinetic model for granular gases. Phys. Rev. E 69, 051301 (2004)ADSMathSciNetCrossRefGoogle Scholar
  110. 110.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)zbMATHGoogle Scholar
  111. 111.
    Brey, J.J., Dufty, J.W., Kim, C.S., Santos, A.: Hydrodynamics for granular flows at low density. Phys. Rev. E 58, 4638–4653 (1998)ADSCrossRefGoogle Scholar
  112. 112.
    Santos, A., Montanero, J.M., Dufty, J.W., Brey, J.J.: Kinetic model for the hard-sphere fluid and solid. Phys. Rev. E 57, 1644–1660 (1998)ADSCrossRefGoogle Scholar
  113. 113.
    Vega Reyes, F., Garzó, V., Santos, A.: Granular mixtures modeled as elastic hard spheres subject to a drag force. Phys. Rev. E 75, 061306 (2007)ADSCrossRefGoogle Scholar
  114. 114.
    Gross, E.P., Krook, M.: Model for collision processes in gases. Small amplitude oscillations of charged two-component systems. Phys. Rev. 102, 593–604 (1956)ADSzbMATHCrossRefGoogle Scholar
  115. 115.
    Garzó, V., Santos, A., Brey, J.J.: A kinetic model for a multicomponent gas. Phys. Fluids A 1, 380–383 (1989)ADSzbMATHCrossRefGoogle Scholar
  116. 116.
    Andries, P., Aoki, K., Perthame, B.: A consistent BGK-type kinetic model for gas mixtures. J. Stat. Phys. 106, 993–1018 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx)Universidad de ExtremaduraBadajozSpain

Personalised recommendations