Advertisement

Dietary Phytochemicals and Their Potential Effects on Diabetes Mellitus 2

  • Rajbala Singh
  • Imran Kazmi
  • Muhammad Afzal
  • Faisal Imam
  • Khalid Saad Alharbi
Chapter

Abstract

Type 2 diabetes mellitus (T2DM) is one of the most important contemporary medical problems that exceed 200 million worldwide. T2DM causes increased risks of cardiovascular disease, kidney failure, blindness, neuropathy, and peripheral circulatory disease. In this chapter; we discuss dietary phytochemicals, and their different species commonly used in dietary fibers and that have shown experimental or clinical antidiabetic activity in all over word. The dietary phytochemicals which are most effective and the most commonly studied in relation to T2DM are polyphenols (simple phenolic acids, anthocyanins, cyanidin, flavonoids, ferulic acid, resveratrol, chalcones, lignans, curcumin, luteolin); flavonoid; isoflavonoids; saponins (ginsenoside, alloxan); amino acid (SACS, 4-hydroxyisoleucine, beta-pyrazol-1-ylalanine); terpenoids (geranylgeraniol, farnesol, geraniol terpenoids); glycosides (oleanolic acid, charantin); carotenoids (lycopene and b-carotene); phytosterols/stanols (phytic acid, a-galactosides, phenolics); linoleic acid; stevioside; oxyphytosterol; fagomine, dietary gallate; and ABA. All dietary phytochemicals have shown different types of mechanism of action and varying degrees of antidiabetic activity.

Keywords

T2DM—type 2 diabetes mellitus SACS—S-allyl cysteine sulfoxide ABA—abscisic acid Dietary phytochemicals Flavonoids 

References

  1. Abou EM, Magdi HA, El-Sayed M, Hegazy E, Soleiman EH, Abeer ME, Naglaa SM (2010) Chemical constituents and biological activities of Artemisia herba-alba. Rec Nat Prod 4(1):1–25Google Scholar
  2. Adlercreutz H (2007) Lignans and human health. Crit Rev Clin Lab Sci 44(5–6):483–525PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alexander LRL, Morrison EY, Nair MG (2004) Hypoglycaemic effect of stigmast-4-en-3-one and its corresponding alcohol from the bark of Anacardium occidentale (cashew). Phytother Res 18:403–407CrossRefGoogle Scholar
  4. Al-Nuaim A, Al-Rubeaan K, Al-Mazrou Y (1997) National chronic metabolic diseases survey 1995. Ministry of Health and King Saud University, Riyadh, pp 23–54Google Scholar
  5. Amarowicz R, Pegg RB (2008) Legumes as a source of natural antioxidants. Eur J Lipid Sci Technol 110:865–878CrossRefGoogle Scholar
  6. Andreas RR, Kuhnle G, Paul B, Gary P, Hubbard KP, Moore C, Rice E (2002) The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med 33(2):220–235CrossRefGoogle Scholar
  7. Anjaneyulu M, Chopra K (2004) Nordihydroguaiaretic acid, a lignin, prevents oxidative stress and the development of diabetic nephropathy in rats. Pharmacology 72:42–50PubMedCrossRefPubMedCentralGoogle Scholar
  8. Anturlikar SD, Gopumadhavan S, Chauhan BL, Mitra SK (1995) Effect of D-400, a herbal formulation, on blood sugar of normal and alloxan-induced diabetic rats. Indian J Physiol Pharmacol 39(2):95–100PubMedPubMedCentralGoogle Scholar
  9. Arab L, Steck S (2000) Lycopene and cardiovascular disease. Am J Clin Nutr 71:1691–1695CrossRefGoogle Scholar
  10. Atsuyo F, Hideyuki S, Asako D, Kunihisa O, Shohei M, Hiroto F, Masahiro N, Taisei N, Takuo T, Hisaji T, Kishio N (2008) Ferulic acid prevents pathological and functional abnormalities of the kidney in Otsuka Long-Evans Tokushima Fatty diabetic rats. Diabetes Res Clin Pract 79:11–17CrossRefGoogle Scholar
  11. Baydas G, Reiter RJ, Yaser A, Tuzcu M, Akdemir I, Nedzvetskii V (2003) Melatonin produces glial reactivity in the hippocampus, cortex, and cerebellum of streptozocin-induced diabetic rats. Free Radic Biol Med 35(7):797–804CrossRefGoogle Scholar
  12. Bell GI, Polonsky SK (2001) Diabetes mellitus and genetically programmed defects in ß-cell function. Nature 414:788–791PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bloedon LT, Szapary PO (2004) Flaxseed and cardiovascular risk. Nutr Rev 62(1):18–27PubMedCrossRefGoogle Scholar
  14. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism and nutritional significance. Nutr Rev 56:317–333PubMedCrossRefGoogle Scholar
  15. Burdge GC, Calder PC (2005) α-Linoleic acid metabolism in adult humans: the effect of gender and age on conversion to longer chain polyunsaturated fatty acids. Eur J Lipid Sci Technol 107:426–439CrossRefGoogle Scholar
  16. Cartea ME, Velasco P (2008) Glucosinolates is Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7(2):213–229CrossRefGoogle Scholar
  17. Celia G, Cummings E, Phoenix DA, Singh J (2003) Beneficial effect and mechanism of action of Momordica charantia in the treatment of diabetes mellitus: a mini review. Int J Diabetes Metab 11:46–55Google Scholar
  18. Ceriello A, Morocutti A, Mercuri F, Quagliaro L, Moro M, Damante G, Viberti GC (2000) Defective intracellular antioxidant enzyme production in type I diabetic patients with nephropathy. Diabetes 49:2170–2177PubMedCrossRefGoogle Scholar
  19. Chi TC, Chen WP, Chi TL, Kuo TF, Lee SS, Cheng JT, Su MJ (2007) Phosphatidylinositol-3-kinase is involved in the antihyperglycemic effect induced by resveratrol in streptozotocin-induced diabetic rats. Life Sci 80:1713–1720PubMedCrossRefGoogle Scholar
  20. Chiu-Mei L, Jen-Hwey C, Wu IH, Wang BW, Chun-Ming P, Yen-Hsu C (2010) Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1α. J Nutr Biochem 21:627–633CrossRefGoogle Scholar
  21. Chung K, Wong TY, Wei C, Huang YW, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464PubMedCrossRefGoogle Scholar
  22. Chung YS, Choi YH, Lee SJ, Choi S, Lee JH, Kimb H, Honga EK (2005) Water extract of Aralia elata prevents cataractogenesis in vitro and in vivo. J Ethnopharmacol 101:49–54PubMedCrossRefPubMedCentralGoogle Scholar
  23. Clifford MN (2000) Anthocyanins-nature, occurrence and dietary burden. J Sci Food Agr 80:1063–1072CrossRefGoogle Scholar
  24. Dae YK, Sang M, Hong MS, Sung Ahn MS, Min Jung Kim MS (2011) Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition 27:244–252CrossRefGoogle Scholar
  25. Dey PM, Harborne JB (1998) Diabetes mellitus: problems and prospectus. Endocr Rev 19:477–490CrossRefGoogle Scholar
  26. Dilmec F, Uzer E, Akkafa F, Kose E, van Kuilenburg AB (2010) Detection of VDR gene ApaI and TaqI polymorphisms in patients with type 2 diabetes mellitus using PCR-RFLP method in a Turkish population. J Diabetes Complications 24:186–191PubMedCrossRefPubMedCentralGoogle Scholar
  27. Duo L, Tongcheng X, Hideto T, Ichiro T, Pianhong Z, Qingqing W, Xiaomei Y, Aizhen Z (2008) Diacylglycerol-induced improvement of whole-body insulin sensitivity in type 2 diabetes mellitus: a long-term randomized, double-blind controlled study. Clin Nutr 27:203–211CrossRefGoogle Scholar
  28. Estelle B, Luc S, Magali B, Cécile M, Laurence LM, Marcel A, Jean-François T (2002) Release of ferulic acid from agroindustrial by-products by the cell wall-degrading enzymes produced by Aspergillus niger I-1472. Enzym Microb Technol 31:1000–1005CrossRefGoogle Scholar
  29. Fernández MIM, Mateos R, García-Parrilla MC, Puertas B, Cantos VE (2012) Bioactive compounds in wine: resveratrol, hydroxytyrosol and melatonin: a review. Food Chem 130:797–813CrossRefGoogle Scholar
  30. Ferrannini E (1998) Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr Rev 19:477–490PubMedCrossRefGoogle Scholar
  31. Fukuda Y, Osawa T, Namiki M, Ozaki T (1985) Studies on antioxidative substances in sesame seed. Agric Biol Chem 49:301–306Google Scholar
  32. Geetanjali K, Santosh S, Rakesh KK, Naik SN (2010) Commonly consumed Indian plant food materials in the management of diabetes mellitus. Diabetes Metab Syndr Clin Res Rev 4:21–40CrossRefGoogle Scholar
  33. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G (2003) Large-scale association studies of variants in genes encoding the pancreatic beta-cell K-ATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52:568–572PubMedCrossRefPubMedCentralGoogle Scholar
  34. Goto T, Takahashi N, Hirai S, Kawada T (2010) Various terpenoids derived from herbal and dietary plants function as PPAR modulators and regulate carbohydrate and lipid metabolism. PPAR Res 2010:9CrossRefGoogle Scholar
  35. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323PubMedCrossRefPubMedCentralGoogle Scholar
  36. Guri AJ, Hontecillas R, Si H, Liu D, Bassaganya RJ (2007) Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets. Clin Nutr 26(1):107–116PubMedCrossRefPubMedCentralGoogle Scholar
  37. Guri AJ, Hontecillas R, Ferrer G, Casagran O, Wankhade I, Noble AM (2008) Loss of PPARg in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue. J Nutr Biochem 19:216–228PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hallmans G, Zhang J, Lundin E, Stattin P, Johansson A (2003) Rye, lignans and human health. Proc Nutr Soc 62:193–199PubMedCrossRefGoogle Scholar
  39. Hambrock A, de Oliveira Franz CB, Hiller S, Grenz A, Ackermann S, Schulze DU, Drews G, Osswald H (2007) Resveratrol binds to the sulfonylurea receptor (SUR) and induces apoptosis in a SUR subtype-specific manner. J Biol Chem 282:3347–3356PubMedCrossRefGoogle Scholar
  40. Harborne JB, Baxter H (1999) The handbook of natural flavonoids, US Department of Agriculture. USDA Database for the Flavonoid Content of Selected Foods—2003, vol 2. Wiley, West SussexGoogle Scholar
  41. Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Goldstein DE, Little RR (1998) Prevalence of diabetes, impaired fasting glucose and impaired glucose tolerance in US adults, the third National health and Nutrition examination survey, 1988–1994. Diabetes Care 21:518–524PubMedCrossRefGoogle Scholar
  42. Haruhiko OAK (2004) Islet amyloid polypeptide-derived amyloid deposition increases along with the duration of type 2 diabetes mellitus. Available online 22 AprGoogle Scholar
  43. Havsteen B (1983) flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32(7):1141–1148PubMedCrossRefGoogle Scholar
  44. Heidemann C, Hoffmann K, Spranger J, Klipstein GK, Mohlig M, Pfeiffer AF (2005) A dietary pattern protective against type 2 diabetes in the European prospective investigation into cancer and nutrition (EPIC)—potsdam study cohort. Diabetologia 48(6):1126–1134PubMedCrossRefGoogle Scholar
  45. Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760PubMedCrossRefGoogle Scholar
  46. Huizinga MM, Rothman RL (2006) Addressing the diabetes pandemic: a comprehensive approach. Indian J Med Res 124:481–484PubMedGoogle Scholar
  47. Ibraheem M, Samah E, Sanaa M, Madeha E (2012) An evaluation of anti-diabetic and anti-lipidemic properties of Momordica charantia (Bitter Melon) fruit extract in experimentally induced diabetes. Life Sci J 9(2):363–374Google Scholar
  48. Ikeda I, Konno R, Shimizu T, Ide T, Takahashi N, Kawada T (2006) Campest-5-en-3-one, an oxidized derivative of campesterol, activates PPAR-alpha, promotes energy consumption and reduces visceral fat deposition in rats. Biochim Biophys Acta 1760:800–807PubMedCrossRefGoogle Scholar
  49. Iwasaki N (2001) Diabetes mellitus. Rinsho Byori 49(2):161–164PubMedGoogle Scholar
  50. Jayaprakasha GK, Rao LJM, Sakariah KK (2002) Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J Agric Food Chem 50:3668–3672PubMedCrossRefGoogle Scholar
  51. Jeppesen PB, Gregersen S, Hermansen K (1996) Stevioside and steviol stimulate insulin secretion from isolated mouse islets. Diabetologia 125:472Google Scholar
  52. Jeppesen PB, Gregersen S, Poulsen CR, Hermansen K (2000) Stevioside acts directly on pancreatic beta cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+-channel activity. Metabolism 49:208–214PubMedCrossRefGoogle Scholar
  53. Jialal I, Devaraj S, Venugopal SK (2002) Oxidative stress, inflammation, and diabetic vasculopathies: the role of alpha tocopherol therapy. Free Radic Res 36(12):1331–1336PubMedCrossRefGoogle Scholar
  54. Junod A, Lambert AE, Staufferacher W, Renold AE (1969) Diabetogenic action of streptozotocin relationship of dose to metabolic response. J Clin Investig 48(11):2129–2139PubMedCrossRefGoogle Scholar
  55. Kazmi I, Mahfoozur R, Muhammad A, Gaurav G, Shakir S, Obaid A, Md. Adil S, Ujjwal N, Sayeed A, Firoz A (2012) Anti-diabetic potential of ursolic acid stearoyl glucoside: a new triterpenic glycosidic ester from Lantana camara. Fitoterapia 83:142–146PubMedCrossRefGoogle Scholar
  56. Kedziora KKZ, Luciak M, Paszkowski J (2000) Lipid peroxidation and activities of antioxidant enzymes in the diabetic kidney: effect of treatment with angiotensin convertase inhibitors. IUBMB Life 49:303–307CrossRefGoogle Scholar
  57. Kempen JH, Colmain BJO, Leske MC (2004) Eye Diseases Prevalence Research Group. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol 122:552–563PubMedCrossRefGoogle Scholar
  58. King H, Rewers M (1993) Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. Diabetes Care 16:157–177PubMedCrossRefGoogle Scholar
  59. Konno R, Kaneko Y, Suzuki K, Matsui Y (2005) Effect of 5-campestenone (24-methylcholest-5-en-3-one) on Zucker diabetic fatty rats as a type 2 diabetes mellitus model. Horm Metab Res 37:79–83PubMedCrossRefGoogle Scholar
  60. Kun Y, Lule US, Xiao LD (2006) Lycopene: its properties and relationship to human health. Food Rev Int 22(4):309–333CrossRefGoogle Scholar
  61. Laakso M, Kesaniemi YA, Kervinen K, Jauhiainen M, Pyorala K (1991) Relationship of coronary heart disease and apolipoprotein E phenotype in patients with non-insulin-dependent diabetes. BMJ 303:1159–1162PubMedPubMedCentralCrossRefGoogle Scholar
  62. Li WL, Zheng HC, Bukuru J, Kimpe ND (2004) Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 92:1–21PubMedCrossRefPubMedCentralGoogle Scholar
  63. Malone JM, Snyder M, Anderson G (1989) Prevention of amputation by diabetic education. Am J Surg 158:520–524PubMedCrossRefPubMedCentralGoogle Scholar
  64. Meghana K, Sanjeev G, Ramesh B (2007) Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals: a prophylactic and protective role. Eur J Pharmacol 577(1–3):183–191PubMedCrossRefPubMedCentralGoogle Scholar
  65. Mohamed B, Abderrahim Z, Hassane M, Abdelhafid T, Abdelkhaleq L (2006) Medicinal plants with potential antidiabetic activity—a review of ten years of herbal medicine research (1990–2000). Int J Diabetes Metab 14:1–25Google Scholar
  66. Montonen J, Knekt P, Harkanen T, Jarvinen R, Heliovaara M, Aromaa A (2005) Dietary patterns and the incidence of type 2 diabetes. Am J Epidemiol 161(3):219–227PubMedCrossRefPubMedCentralGoogle Scholar
  67. Nagao T, Watanabe H, Goto N (2000) Dietary diacylglycerol suppresses accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial. J Nutr 130:792–798PubMedCrossRefPubMedCentralGoogle Scholar
  68. NCEP EP (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285:2486–2497CrossRefGoogle Scholar
  69. Nobili S, Lippi D, Witort E, Donnini M, Bausi L (2009) Natural compounds for cancer treatment and prevention. Pharmacol Res 59(6):365–378PubMedCrossRefGoogle Scholar
  70. Nurfina AN, Reksohadiprodjo MS, Timmerman H, Jenie UA, Sugiyanto D, van der Goot H (1997) Synthesis of some symmetrical curcumin derivatives and their anti-inflammatory activity. Eur J Med Chem 32:321–328CrossRefGoogle Scholar
  71. Oberley L (1988) Free radicals and diabetes. Free Radic Biol Med 5:113–124PubMedCrossRefGoogle Scholar
  72. Pearson ER, Velho G, Clark P, Stride A, Shepherd M, Frayling TM, Bulman PM, Ellard S, Fronguel P, Hattersley T (2001) ß-Cell genes and diabetes: quantitative and qualitative differences in the pathophysiology of hepatic nuclear factor-1 and glucokinase mutations. Diabetes 50:5101–5107CrossRefGoogle Scholar
  73. Pelle GL, Olsson HK, Mona LO (2010) Are active sun exposure habits related to lowering risk of type 2 diabetes mellitus in women, a prospective cohort study? Diabetes Res Clin Pract 90:109–114CrossRefGoogle Scholar
  74. Perez VF, Duarte J (2010) Phytochemicals and cardiovascular protection: flavonols and cardiovascular disease. Mol Asp Med 31(6):478–494CrossRefGoogle Scholar
  75. Philipp S, Akos S, Walter J, Thomas S (2008) Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res 658:68–94CrossRefGoogle Scholar
  76. Pietraszek AG, Hermansen SK (2010) Alcohol and type 2 diabetes, a review. Nutr Metab Cardiovasc Dis 20:366–375PubMedCrossRefPubMedCentralGoogle Scholar
  77. Prasad K (1999) Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Circulation 99(10):1355–1362PubMedCrossRefGoogle Scholar
  78. Prasad K (2000) Antioxidant activity of secoisolariciresinol diglucoside-derived metabolites, secoisolariciresinol, enterodiol, and enterolactone. Int J Angiol 9:220–225PubMedCrossRefGoogle Scholar
  79. Prasad K (2001) Secoisolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat. J Lab Clin Med 138:32–39PubMedCrossRefGoogle Scholar
  80. Prasad K (2004) Antihypertensive activity of secoisolariciresinol diglucoside (SDG) isolated from flaxseed: role of guanylate cyclase. Int J Angiol 13:7–14CrossRefGoogle Scholar
  81. Reaven PD, Herlod DA, Barnet J, Edelman S (1995) Effects on vitamin E on susceptibility of low density lipoprotein subfraction to oxidation and protein glycation in NIDDM. Diabetes Care 18:807–816PubMedCrossRefGoogle Scholar
  82. Reynisdottir G, Thorleifsson R, Benediktsson G, Sigurdsson VE, Einarsdottir AS (2003) Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34–q35. 2. Am J Hum Genet 73:323–335PubMedPubMedCentralCrossRefGoogle Scholar
  83. Richard S, Shaw J, Zimmet P (2006) Prevalence and projections. In: Gan D (ed) International Diabetes Atlas, 3rd edn. Brussels, International Diabetes Federation, pp 15–104Google Scholar
  84. Rivera L, Morón R, Zarzuelo A, Galisteo M (2009) Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem Pharmacol 77:1053–1063PubMedCrossRefGoogle Scholar
  85. Rochfort S, Panozzo J (2007) Phytochemicals for health, the role of pulses. J Agric Food Chem 55:7981–7994PubMedCrossRefGoogle Scholar
  86. Rosangela GD, Zanatta AP, Cazarolli LH, Alessandra M, Louise DC, Ricardo JN, Rosendo AY, Fatima RM, Barreto S (2009) Nitrochalcones: potential in vivo insulin secretagogues. Biochimie 91:1493–1498CrossRefGoogle Scholar
  87. Ryu JK, Lee T, Kim DJ (2005) Free radical scavenging activity of Korean red ginseng for erectile dysfunction in non insulin dependent diabetes mellitus rats. Urology 65:611–615PubMedCrossRefGoogle Scholar
  88. Sahu SC (2002) Dual role of organosulfur compounds in foods: a review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 20:61–76PubMedCrossRefGoogle Scholar
  89. Samir D, Shalini J, Hariom Y (2011) Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Res Int 44:1856–1865CrossRefGoogle Scholar
  90. Sasaki R, Nishimura N, Hoshino H, Isa Y, Kadowaki M (2007) Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to down regulation of retinol binding protein 4 expression in diabetic mice. Biochem Pharmacol 74(11):1619–1627PubMedCrossRefGoogle Scholar
  91. Sendberg AS (2002) Bioavailability of minerals in legumes. Br J Nutr 88:281–285CrossRefGoogle Scholar
  92. Seo K, Choi MS, Jung UJ, Kim HJ, Yeo J, Jeon SM, Lee MK (2008) Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol Nutr Food Res 52(9):995–1004PubMedCrossRefGoogle Scholar
  93. Shah VO, Scavini M, Nikolic J, Sun Y, Vai S, Griffith KJ (1998) Z-2 microsatellite allele is linked to increased expression of the aldose reductase gene in diabetic nephropathy. J Clin Endocrinol Metab 83:2886–2891PubMedGoogle Scholar
  94. Simonen P, Gylling H, Howard AN, Miettinen TA (2000) Introducing a new component of the metabolic syndrome: low cholesterol absorption. Am J Clin Nutr 72:82–88PubMedCrossRefPubMedCentralGoogle Scholar
  95. Simopoulos AP (1991) Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 54:438–463PubMedCrossRefPubMedCentralGoogle Scholar
  96. Sing CL, Yen HL, Jen FL, Wen HC, Chiao MC, Chen CYO (2011) Almond consumption improved glycemic control and lipid profiles in patients with type 2 diabetes mellitus. Metab Clin Exp 60:474–479CrossRefGoogle Scholar
  97. Soobrattee MA, Neergheen VS, Luximon RA, Aruoma OIB (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res 579:200–213PubMedCrossRefPubMedCentralGoogle Scholar
  98. Sri Balasubashini M, Rukkumani R, Viswanathan P, Venugopal PM (2004) Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytother Res 18(4):310–314PubMedCrossRefGoogle Scholar
  99. Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. BBA—Mol Basis Dis 1740(2):101–117CrossRefGoogle Scholar
  100. Sterti R (2010) Berberine for diabetes mellitus type 2. Nat Med J 2(10):5–6Google Scholar
  101. Suresh Y, Das UN (2003) Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus: effect of ω-6 fatty acids. Nutrition 19:93–114PubMedCrossRefGoogle Scholar
  102. Suzuki K, Tanaka M, Konno R, Kaneko Y (2002) Effects of 5-campestenone (24-methylcholest-5-en-3-one) on the type 2 diabetes mellitus model animal C57BL/KsJ-db/db mice. Horm Metab Res 34:121–126PubMedCrossRefGoogle Scholar
  103. Szkudelska K, Nogowski L, Szkudelski T (2009) The inhibitory effect of resveratrol on leptin secretion from rat adipocytes. Eur J Clin Investig 39:899–905CrossRefGoogle Scholar
  104. Tada N, Watanabe H, Matsuo N, Tokimitsu I, Okazaki M (2001) Dynamics of postprandial remnant-like lipoprotein particles in serum after loading of diacylglycerols. Clin Chim Acta 311:109–117PubMedCrossRefGoogle Scholar
  105. Taguchi H, Watanabe H, Onizawa K (2000) Double-blind controlled study on the effects of dietary diacylglycerol on postprandial serum and chylomicron triacylglycerol responses in healthy humans. J Am Coll Nutr 19:789–796PubMedCrossRefGoogle Scholar
  106. Taguchi H, Nagao T, Watanabe H (2001) Energy value and digestibility of dietary oil containing mainly 1,3-diacylglycerol are similar to those of triacylglycerol. Lipids 36:379–382PubMedCrossRefGoogle Scholar
  107. Takahashi N, Kawada T, Goto T, Yamamoto T, Taimatsu A (2002) Dual action of isoprenols from herbal medicines on both PPAR and PPAR-gamma in 3T3-L1 adipocytes and HepG2 hepatocytes. FEBS Lett 514(2–3):315–322PubMedCrossRefGoogle Scholar
  108. Takase H, Shoji K, Hase T, Tokimitsu I (2005) Effect of diacylglycerol on postprandial lipid metabolism in non-diabetic subjects with and without insulin resistance. Atherosclerosis 180:197–204CrossRefGoogle Scholar
  109. Tanaka M, Misawa E, Ito Y, Habara N, Nomaguchi K, Yamada M (2006) Identification of five phytosterols from Aloe vera gel as antidiabetic compounds. Biol Pharm Bull 29:1418–1422PubMedCrossRefGoogle Scholar
  110. Tsuda T (2008) Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome. J Agric Food Chem 56(3):642–646PubMedCrossRefGoogle Scholar
  111. Ubels FL, Links TP, Sluiter WJ, Reitsma WD, Smit AJ (1999) Walking training for intermittent claudification in diabetes. Diabetes Care 22:198–201PubMedCrossRefGoogle Scholar
  112. Vidal VC, Frías J, Sierra I, Blazquez I, Lambien F, Kuo YH (2002) New functional legume food by germination. Effect on the nutritive value of beans, lentils and peas. Eur Food Res Technol 215:472–476CrossRefGoogle Scholar
  113. Vijaimohan K, Jainu M, Sabitha KE, Subramaniyam S, Anandhan C, Shyamala DCS (2006) Beneficial effects of alpha linolenic acid rich flaxseed oil on growth performance and hepatic cholesterol metabolism in high fat diet fed rats. Life Sci 79:448–454PubMedCrossRefGoogle Scholar
  114. Wasan KM, Zamfir C, Pritchard PH, Pederson RA (2003) Influence of phytostanol phosphoryl ascorbate (FM-VP4) on insulin resistance, hyperglycemia, plasma lipid levels, and gastrointestinal absorption of exogenous cholesterol in Zucker (fa/fa) fatty and lean rats. J Pharm Sci 92:281–288PubMedCrossRefGoogle Scholar
  115. WHO, IDF (2006) Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: 2006. World Health Organization, GenevaGoogle Scholar
  116. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053PubMedCrossRefPubMedCentralGoogle Scholar
  117. Williams RJ, Spencer JP, Rice EC (2004) Flavonoids: antioxidants or signaling molecules. Free Radic Biol Med 36:838–849PubMedCrossRefPubMedCentralGoogle Scholar
  118. Wolford JK, Gruber JD, Ossowski VM, Vozarova B, Antonio Tataranni P, Bogardus C, Hanson RL (2003) A C-reactive protein promoter polymorphism is associated with type 2 diabetes mellitus in Pima Indians. Mol Genet Metab 78:136–144PubMedPubMedCentralCrossRefGoogle Scholar
  119. Xavier CPR, Lima CF, Preto A, Seruca R, Fernandes FM, Pereira WC (2009) Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Lett 281(2):162–170PubMedCrossRefPubMedCentralGoogle Scholar
  120. Zhaoa J, Zhaob Y, Zhenga W, Lub Y, Fengb G, Yub S (2008) Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats. Brain Res 1229:224–232CrossRefGoogle Scholar
  121. Zheng CD, Duan YQ, Gao JM, Ruan ZG (2010) Screening for anti-lipase properties of 37 traditional Chinese medicinal herbs. J Chin Med Assoc 73(6):319–324PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rajbala Singh
    • 1
  • Imran Kazmi
    • 2
  • Muhammad Afzal
    • 3
  • Faisal Imam
    • 4
  • Khalid Saad Alharbi
    • 3
  1. 1.Siddhartha Institute of PharmacyDehra DunIndia
  2. 2.Glocal School of PharmacyGlocal UniversitySaharanpurIndia
  3. 3.Department of Pharmacology College of PharmacyJouf UniversitySakakaSaudi Arabia
  4. 4.College of Pharmacy, King Saud UniversityRiyadhSaudi Arabia

Personalised recommendations