Advertisement

Chemistry and Pharmacology of Guggulsterone: An Active Principle of Guggul Plant

  • Musadiq Hussain Bhat
  • Mufida Fayaz
  • Amit Kumar
  • Ashok Kumar Jain
Chapter

Abstract

Guggulsterone is a plant sterol isolated from gum resin of some members of family Burseraceae. The gum resin from these plants has been used for thousands of years to treat various ailments like obesity, tumours, intestinal worms, liver problems, cancer, leucoderma, etc. An important bioactive component of this natural resin has been identified as guggulsterone. There is a great demand for large amounts of the guggulsterones for further in vitro and in vivo studies. As this demand is not met by natural sources, which only provide the compounds in low yield, synthetic mechanisms were recently developed for synthesis of this important sterol to make it available in sufficient quantities to put in evidence its valuable biological effects. The aim of this review is to examine the chemistry and pharmacology of this compound.

Keywords

Guggulsterone Anti-inflammatory Anticancer Steroids Commiphora 

Abbreviations

BCL-2

B-cell lymphoma 2

COX-2

Cyclooxygenase-2

DMSO

Dimethyl sulfoxide

DSS

Dextran sulfate sodium

FXR

Farnesoid X receptor

GS

Guggulsterone

HNSC

Head and neck squamous carcinoma

IAP

Inhibitor of apoptosis proteins

IFN

Interferon

IL

Interleukin

iNOS

Inducible nitric oxide synthase

JNK

c-Jun NH(2)-terminal kinase

LPS

Lipopolysaccharide

MAPKAP1

Mitogen-activated protein kinase associated protein 1

MCL-1

Myeloid cell leukemia 1

mTOR

Mammalian target of rapamycin

NF-kB

Nuclear factor-kB

THF

Tetrahydrofuran

VEGF

Vascular endothelial growth factor

VEGFR

Vascular endothelial growth factor receptor

XIAP

X-linked inhibitor of apoptosis protein

References

  1. Ahn DW, Seo JK, Lee SH, Hwang JH, Lee JK, Ryu JK, Kim YT, Yoon YB (2012) Enhanced antitumor effect of combination therapy with gemcitabine and guggulsterone in pancreatic cancer. Pancreas 41(7):1048–1057PubMedGoogle Scholar
  2. Almazari I, Park JM, Park SA, Suh JY, Na HK, Cha YN, Surh YJ (2012) Guggulsterone induces heme oxygenase-1 expression through activation of Nrf2 in human mammary epithelial cells: PTEN as a putative target. Carcinogenesis 33(2):368–376PubMedGoogle Scholar
  3. An MJ, Cheon JH, Kim SW, Kim ES, Kim TI, Kim WH (2009) Guggulsterone induces apoptosis in colon cancer cells and inhibits tumor growth in murine colorectal cancer xenografts. Cancer Lett 279:93–100PubMedGoogle Scholar
  4. Benn WR, Dodson RM (1964) The synthesis and stereochemistry of isomeric 16-hydroxy-17 (20)-pregnenes. J Org Chem 29(5):1142–1148Google Scholar
  5. Benveniste P (1986) Sterol biosynthesis. Ann Rev Plant Physiol 37:275–308Google Scholar
  6. Capello A, Moons LM, Van De Winkel A, Siersema PD, Van Dekken H, Kuipers EJ, Kusters JG (2008) Bile acid-stimulated expression of the farnesoid X receptor enhances the immune response in Barrett esophagus. Am J Gastroenterol 103(6):1510–1516PubMedGoogle Scholar
  7. Chander R, Rizvi F, Khanna AK, Pratap R (2003) Cardioprotective activity of synthetic guggulsterone (E and Z-isomers) in isoproterenol induced myocardial ischemia in rats: a comparative study. Indian J Clin Biochem 18(2):71–79PubMedPubMedCentralGoogle Scholar
  8. Chang KO, George DW (2007) Bile acids promote the expression of hepatitis C virus in replicon-harboring cells. J Virol 81(18):9633–9640PubMedPubMedCentralGoogle Scholar
  9. Cheon JH, Kim JS, Kim JM, Kim N, Jung HC, Song IS (2006) Plant sterol guggulsterone inhibits nuclear factor-kappaB signaling in intestinal epithelial cells by blocking IkappaB kinase and ameliorates acute murine colitis. Inflamm Bowel Dis 12(12):1152–1161PubMedGoogle Scholar
  10. Cui J, Huang L, Zhao A, Lew JL, Yu J, Sahoo S, Meinke PT, Royo I, Pelaez F, Wright SD (2003) Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pump. J Biol Chem 278(12):10214–10220PubMedGoogle Scholar
  11. De Gottardi A, Dumonceau JM, Bruttin F, Vonlaufen A, Morard I, Spahr L, Rubbia-Brandt L, Frossard JL, Dinjens WN, Rabinovitch PS, Hadengue A (2006) Expression of the bile acid receptor FXR in Barrett’s esophagus and enhancement of apoptosis by guggulsterone in vitro. Mol Cancer 5:48PubMedPubMedCentralGoogle Scholar
  12. Dixit D, Ghildiyal R, Anto NP, Ghosh S, Sharma V, Sen E (2013) Guggulsterone sensitizes glioblastoma cells to Sonic hedgehog inhibitor SANT-1 induced apoptosis in a Ras/NFkappaB dependent manner. Cancer Lett 336(2):347–358PubMedGoogle Scholar
  13. Dufer M, Horth K, Wagner R, Schittenhelm B, Prowald S, Wagner TF, Oberwinkler J, Lukowski R, Gonzalez FJ, Krippeit-Drews P, Drews G (2012) Bile acids acutely stimulate insulin secretion of mouse beta-cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes 61(6):1479–1489PubMedPubMedCentralGoogle Scholar
  14. Gao Y, Zeng Y, Tian J, Islam MS, Jiang G, Xiao D (2015) Guggulsterone inhibits prostate cancer growth via inactivation of Akt regulated by ATP citrate lyase signaling. Oncotarget 6(30):30420PubMedCentralGoogle Scholar
  15. Gebhard C, Stampfli SF, Gebhard CE, Akhmedov A, Breitenstein A, Camici GG, Holy EW, Luscher TF, Tanner FC (2009) Guggulsterone, an anti-inflammatory phytosterol, inhibits tissue factor and arterial thrombosis. Basic Res Cardiol 104(3):285–294PubMedGoogle Scholar
  16. Gilmore TD (1997) Introduction: the Rel/NF-kappaB signal transduction pathway. Semin Cancer Biol 8:61–62PubMedGoogle Scholar
  17. Gioiello A, Sardella R, Rosatelli E, Sadeghpour BM, Natalini B, Pellicciari R (2012) Novel stereoselective synthesis and chromatographic evaluation of E-guggulsterone. Steroids 77(3):250–254PubMedGoogle Scholar
  18. Grandis JR, Drenning SD, Chakraborty A, Zhou MY, Zeng Q, Pitt AS, Tweardy DJ (1998) Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor-mediated cell growth in vitro. J Clin Invest 102:1385–1392PubMedPubMedCentralGoogle Scholar
  19. Grandis JR, Drenning SD, Zeng Q, Watkins SC, Melhem MF, Endo S, Johnson DE, Huang L, He Y, Kim JD (2000a) Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci U S A 97:4227–4232PubMedPubMedCentralGoogle Scholar
  20. Grandis JR, Zeng Q, Drenning SD (2000b) Epidermal growth factor receptor-mediated stat3 signaling blocks apoptosis in head and neck cancer. Laryngoscope 110:868–874Google Scholar
  21. Guan B, Hoque A, Xu X (2014) Amiloride and guggulsterone suppression of esophageal cancer cell growth in vitro and in nude mouse xenografts. Front Biol (Beijing) 9:75–81Google Scholar
  22. Gupta VK, Bandhoria P, Gupta BD, Gupta KK (2006) Crystal structure of guggulsterone Z. Crystallogr Rep 51(2):265–270Google Scholar
  23. Ham J, Chin J, Kang H (2011) A regioselective synthesis of E-guggulsterone. Molecules 16(5):4165–4171PubMedCentralGoogle Scholar
  24. Hubert S (2003) The role of sterols in plant growth and development. Prog Lipid Res 42:163–175Google Scholar
  25. Jiang G, Xiao X, Zeng Y, Nagabhushanam K, Majeed M, Xiao D (2013) Targeting beta-catenin signaling to induce apoptosis in human breast cancer cells by z-guggulsterone and Gugulipid extract of Ayurvedic medicine plant Commiphora mukul. BMC Complement Altern Med 13:203PubMedPubMedCentralGoogle Scholar
  26. Kalariya NM, Shoeb M, Reddy AB, Zhang M, van Kuijk FJ, Ramana KV (2010) Prevention of endotoxin induced uveitis in rats by plant sterol guggulsterone. Invest Ophthalmol Vis Sci 51:5105–5113PubMedPubMedCentralGoogle Scholar
  27. Kaul S, Kapoor NK (1989) Cardiac sarcolemma enzymes and liver microsomal cytochrome P450 in isoproterenol treated rats. Indian J Med Res 90:62–68PubMedGoogle Scholar
  28. Kim ES, Hong SY, Lee HK, Kim SW, An MJ, Kim TI, Lee KR, Kim WH, Cheon JH (2008) Guggulsterone inhibits angiogenesis by blocking STAT3 and VEGF expression in colon cancer cells. Oncol Rep 20(6):1321–1327PubMedGoogle Scholar
  29. Kim BH, Yoon JH, Yang JI, Myung SJ, Lee JH, Jung EU, Yu SJ, Kim YJ, Lee HS, Kim CY (2013) Guggulsterone attenuates activation and survival of hepatic stellate cell by inhibiting nuclear factor kappa B activation and inducing apoptosis. J Gastroenterol Hepatol 28(12):1859–1868PubMedGoogle Scholar
  30. Kim DG, Bae GS, Choi SB, Jo IJ, Shin JY, Lee SK, Kim MJ, Kim MJ, Jeong HW, Choi CM, Seo SH, Choo GC, Seo SW, Song HJ, Park SJ (2015a) Guggulsterone attenuates cerulein-induced acute pancreatitis via inhibition of ERK and JNK activation. Int Immunopharmacol 26(1):194–202PubMedGoogle Scholar
  31. Kim DG, Bae GS, Jo IJ, Choi SB, Kim MJ, Jeong JH, Kang DG, Lee HS, Song HJ, Park SJ (2015b) Guggulsterone attenuated lipopolysaccharide-induced inflammatory responses in mouse inner medullary collecting duct-3 cells. Inflammation 39:87–95Google Scholar
  32. Kong JN, He Q, Wang G, Dasgupta S, Dinkins MB, Zhu G, Kim A, Spassieva S, Bieberich E (2015) Guggulsterone and bexarotene induce secretion of exosome-associated breast cancer resistance protein and reduce doxorubicin resistance in MDA-MB-231 cells. Int J Cancer 137(7):1610–1620PubMedPubMedCentralGoogle Scholar
  33. Koo JH, Rhee KS, Koh HW, Jang HY, Park BH, Park JW (2012) Guggulsterone inhibits melanogenesis in B16 murine melanoma cells by down regulating tyrosinase expression. Int J Mol Med 30:974–978PubMedGoogle Scholar
  34. Krishnamurthy K, Wang G, Rokhfeld D, Bieberich E (2008) Deoxycholate promotes survival of breast cancer cells by reducing the level of pro-apoptotic ceramide. Breast Cancer Res 10:R106PubMedPubMedCentralGoogle Scholar
  35. Kuppurajan K, Rajagopalan SS, Rao TK, Vijayalakshmi AN, Dwarakanath C (1973) Effect of guggulu (Commiphora mukul Engl.) on serum lipids in obese subjects. J Res Ind Med 8:1–8Google Scholar
  36. Lee YR, Lee JH, Noh EM, Kim EK, Song MY, Jung WS, Park SJ, Kim JS, Park JW, Kwon KB et al (2008) Guggulsterone blocks IL-1beta-mediated inflammatory responses by suppressing NF-kappaB activation in fibroblast-like synoviocytes. Life Sci 82:1203–1209PubMedGoogle Scholar
  37. Lee JY, Lee KT, Lee JK, Lee KH, Jang KT, Heo JS, Choi SH, Kim Y, Rhee JC (2011) Farnesoid X receptor, overexpressed in pancreatic cancer with lymph node metastasis promotes cell migration and invasion. Br J Cancer 104:1027–1037PubMedPubMedCentralGoogle Scholar
  38. Leeman-Neill RJ, Wheeler SE, Singh SV, Thomas SM, Seethala RR, Neill DB, Panahandeh MC, Hahm ER, Joyce SC, Sen M et al (2009) Guggulsterone enhances head and neck cancer therapies via inhibition of signal transducer and activator of transcription-3. Carcinogenesis 30:1848–1856PubMedPubMedCentralGoogle Scholar
  39. Li C, Zang Y, Sen M, Leeman-Neill RJ, Man DS, Grandis JR, Johnson DE (2009) Bortezomib up-regulates activated signal transducer and activator of transcription-3 and synergizes with inhibitors of signal transducer and activator of transcription-3 to promote head and neck squamous cell carcinoma cell death. Mol Cancer Ther 8(8):2211–2220PubMedPubMedCentralGoogle Scholar
  40. Lv N, Song MY, Kim EK, Park JW, Kwon KB, Park BH (2008) Guggulsterone, a plant sterol, inhibits NF-kappaB activation and protects pancreatic beta cells from cytokine toxicity. Mol Cell Endocrinol 289:49–59PubMedGoogle Scholar
  41. Macha MA, Matta A, Chauhan S, Siu KM, Ralhan R (2010) 14-3-3 Zeta is a molecular target in guggulsterone induced apoptosis in head and neck cancer cells. BMC Cancer 10:655PubMedPubMedCentralGoogle Scholar
  42. Macha MA, Matta A, Chauhan SS, Siu KW, Ralhan R (2011a) Guggulsterone (GS) inhibits smokeless tobacco and nicotine-induced NF-kappaB and STAT3 pathways in head and neck cancer cells. Carcinogenesis 32:368–380PubMedGoogle Scholar
  43. Macha MA, Matta A, Chauhan SS, Siu KW, Ralhan R (2011b) Guggulsterone targets smokeless tobacco induced PI3K/Akt pathway in head and neck cancer cells. PLoS One 6:e14728PubMedPubMedCentralGoogle Scholar
  44. Macha MA, Rachagani S, Gupta S, Pai P, Ponnusamy MP, Batra SK, Jain M (2013) Guggulsterone decreases proliferation and metastatic behavior of pancreatic cancer cells by modulating JAK/STAT and Src/FAK signaling. Cancer Lett 341:166–177PubMedGoogle Scholar
  45. Malhotra SC, Ahuja MM (1971) Comparative hypolipidaemic effectiveness of gum guggulu (Commiphora mukul) fraction ‘A’, ethyl-P-chlorophenoxyisobutyrate and Ciba-13437-Su. Indian J Med Res 59(10):1621–1632PubMedGoogle Scholar
  46. Mencarelli A, Renga B, Palladino G, Distrutti E, Fiorucci S (2009) The plant sterol guggulsterone attenuates inflammation and immune dysfunction in murine models of inflammatory bowel disease. Biochem Pharmacol 78:1214–1223PubMedGoogle Scholar
  47. Mirza S, Sharma G, Parshad R, Gupta SD, Pandya P, Ralhan R (2013) Expression of DNA methyl transferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J Breast Cancer 16:23–31PubMedPubMedCentralGoogle Scholar
  48. Moon Y, Choi SM, Chang S, Park B, Lee S, Lee MO, Choi HS, Park H (2015) Chenodeoxycholic acid reduces hypoxia inducible factor-1α protein and its target genes. PLoS One 10(6):e0130911PubMedPubMedCentralGoogle Scholar
  49. Pal P, Kanaujiya JK, Lochab S, Tripathi SB, Sanyal S, Behre G, Trivedi AK (2013) Proteomic analysis of rosiglitazone and guggulsterone treated 3T3-L1 preadipocytes. Mol Cell Biochem 376(1–2):81–93PubMedGoogle Scholar
  50. Patel SS, Savjani JK (2015) Systematic review of plant steroids as potential anti-inflammatory agents: current status and future perspectives. J Phytopharmacol 4(2):121–125Google Scholar
  51. Patil VD, Nayak UR, Dev S (1972) Chemistry of ayurvedic crude drugs—I: Guggulu (resin from Commiphora mukul)—1: steroidal constituents. Tetrahedron 28(8):2341–2352Google Scholar
  52. Pratap R, Singh DP, Pal R, Singh S (2008) Council of Scientific and Industrial Research. Process for preparing guggulsterones. US Patent 7,365,218Google Scholar
  53. Pu J, Yuan A, Shan P, Gao E, Wang X, Wang Y, Lau WB, Koch W, Ma XL, He B (2013) Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury. Eur Heart J 34(24):1834–1845PubMedGoogle Scholar
  54. Qin P, Borges-Marcucci LA, Evans MJ, Harnish DC (2005) Bile acid signaling through FXR induces intracellular adhesion molecule-1 expression in mouse liver and human hepatocytes. Am J Physiol Gastrointest Liver Physiol 289(2):G267–G273PubMedGoogle Scholar
  55. Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18:6938–6947PubMedGoogle Scholar
  56. Rizzo G, Disante M, Mencarelli A, Renga B, Gioiello A, Pellicciari R, Fiorucci S (2006) The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo. Mol Pharmacol 70(4):1164–1173PubMedGoogle Scholar
  57. Samudio I, Konopleva M, Safe S, McQueen T, Andreeff M (2005) Guggulsterones induce apoptosis and differentiation in acute myeloid leukemia: identification of isomer-specific antileukemic activities of the pregnadienedione structure. Mol Cancer Ther 4:1982–1992PubMedGoogle Scholar
  58. Satyavati GV, Dwarakanath C, Tripathi SN (1969) Experimental studies on the hypocholesterolemic effect of Commiphora mukul Engl. (Guggul). Indian J Med Res 57(10):1950–1962PubMedGoogle Scholar
  59. Saxena G, Singh SP, Pal R, Singh S, Pratap R, Nath C (2007) Gugulipid, an extract of Commiphora whightii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacol Biochem Behav 86:797–805PubMedGoogle Scholar
  60. Scholtes C, Diaz O, Icard V, Kaul A, Bartenschlager R, Lotteau V, Andre P (2008) Enhancement of genotype 1 hepatitis C virus replication by bile acids through FXR. J Hepatol 48(2):192–199PubMedGoogle Scholar
  61. Sharma JN, Sharma JN (1977) Comparison of the anti-inflammatory activity of Commiphora mukul (an indigenous drug) with those of phenylbutazone and ibuprofen in experimental arthritis induced by mycobacterial adjuvant. Arzneimittelforschung 27(7):1455–1457PubMedGoogle Scholar
  62. Sharma B, Salunke R, Srivastava S, Majumder C, Roy P (2009) Effects of guggulsterone isolated from Commiphora mukul in high fat diet induced diabetic rats. Food Chem Toxicol 47:2631–2639PubMedGoogle Scholar
  63. Shishodia S, Aggarwal BB (2004) Guggulsterone inhibits NF-kappaB and IkappaBalpha kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J Biol Chem 279:47148–47158PubMedGoogle Scholar
  64. Shishodia S, Sethi G, Ahn KS, Aggarwal BB (2007) Guggulsterone inhibits tumor cell proliferation, induces S-phase arrest, and promotes apoptosis through activation of c-Jun N-terminal kinase, suppression of Akt pathway, and downregulation of antiapoptotic gene products. Biochem Pharmacol 74(1):118–130PubMedPubMedCentralGoogle Scholar
  65. Singh RP, Dhanalakshmi S, Agarwal C, Agarwal R (2005a) Silibinin strongly inhibits growth and survival of human endothelial cells via cell cycle arrest and down regulation of survivin, Akt and NF-kappaB: implications for angioprevention and antiangiogenic therapy. Oncogene 24:1188–1202PubMedGoogle Scholar
  66. Singh SV, Zeng Y, Xiao D, Vogel VG, Nelson JB, Dhir R, Tripathi YB (2005b) Caspase dependent apoptosis induction by guggulsterone, a constituent of ayurvedic medicinal plant Commiphora mukul, in PC-3 human prostate cancer cells is mediated by Bax and Bak. Mol Cancer Ther 4:1747–1754PubMedGoogle Scholar
  67. Singh SV, Choi S, Zeng Y, Hahm ER, Xiao D (2007) Guggulsterone-induced apoptosis in human prostate cancer cells is caused by reactive oxygen intermediate dependent activation of c-Jun NH2-terminal kinase. Cancer Res 67:7439–7449PubMedGoogle Scholar
  68. Song JJ, Kwon SK, Cho CG, Park SW, Chae SW (2010) Guggulsterone suppresses LPS induced inflammation of human middle ear epithelial cells (HMEEC). Int J Pediatr Otorhinolaryngol 74:1384–1387PubMedGoogle Scholar
  69. Srivastava M, Kapoor NK (1986) Guggulsterone induced changes in the levels of biogenic monoamines and dopamine ß-hydroxylase activity of rat tissues. J Biosci 10:15–19Google Scholar
  70. Tripathi YB, Malhotra OP, Tripathi SN (1984) Thyroid stimulating action of Z-guggulsterone obtained from Commiphora mukul. Planta Med 50(1):78–80PubMedGoogle Scholar
  71. Tripathi YB, Tripathi P, Malhotra OP, Tripathi SN (1988) Thyroid stimulatory action of (Z)-guggulsterone: mechanism of action. Planta Med 54(4):271–277PubMedGoogle Scholar
  72. Ulbricht C, Basch E, Szapary P, Hammerness P, Axentsev S, Boon H, Kroll D, Garraway L, Vora M, Woods J (2005) Guggul for hyperlipidemia: a review by the Natural Standard Research Collaboration. Complement Ther Med 13(4):279–290PubMedGoogle Scholar
  73. Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P, Yan Y, Gonzalez FJ, Heyman RA, Mangelsdorf DJ, Moore DD (2002) A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 296(5573):1703–1706PubMedGoogle Scholar
  74. Wang WC, Uen YH, Chang ML, Cheah KP, Li JS, Yu WY, Lee KC, Choy CS, Hu CM (2012) Protective effect of guggulsterone against cardiomyocyte injury induced by doxorubicin in vitro. BMC Complement Altern Med 12:138PubMedPubMedCentralGoogle Scholar
  75. Yamada T, Osawa S, Ikuma M Kajimura M, Sugimoto M, Furuta T, Iwaizumi M, Sugimoto K (2014) Guggulsterone, a plant-derived inhibitor of NF-TB, suppresses CDX2 and COX-2 expression and reduces the viability of esophageal adenocarcinoma cells. Digestion 90(3):208–217PubMedGoogle Scholar
  76. Yang JY, Della-Fera MA, Baile CA (2008) Guggulsterone inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 cells. Obesity (Silver Spring) 16:16–22Google Scholar
  77. Yang MH, Lee KT, Yang S, Lee JK, Lee KH, Moon IH, Rhee JC (2012) Guggulsterone enhances antitumor activity of gemcitabine in gallbladder cancer cells through suppression of NF-κB. J Cancer Res Clin Oncol 138:1743–1751PubMedGoogle Scholar
  78. Yokota T (1997) The structure, biosynthesis and functions of brassinosteroids. Trends Plant Sci 2:137–143Google Scholar
  79. Yu BZ, Kaimal R, Bai S, El Sayed KA, Tatulian SA, Apitz RJ, Jain MK, Deng R, Berg OG (2009) Effect of guggulsterone and cembranoids of Commiphora mukul on pancreatic phospholipase A (2): role in hypocholesterolemia. J Nat Prod 72:24–28PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Musadiq Hussain Bhat
    • 1
  • Mufida Fayaz
    • 1
  • Amit Kumar
    • 2
  • Ashok Kumar Jain
    • 2
  1. 1.School of Studies in BotanyJiwaji UniversityGwaliorIndia
  2. 2.Institute of Ethnobiology, Jiwaji UniversityGwaliorIndia

Personalised recommendations