Advertisement

A Pneumatic Haptic Probe Replica for Tele-Robotized Ultrasonography

  • Ibrahim Abdallah
  • Fabrice Gatwaza
  • Nicolas Morette
  • Arnaud Lelevé
  • Cyril Novales
  • Laurence Nouaille
  • Xavier Brun
  • Pierre Vieyres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11010)

Abstract

This paper introduces a pneumatic haptic device to remotely control a slave ultrasound probe-holder robot. This device should orientate this probe according to the sonographer’s examination needs, while rendering the force applied by it on the patient’s body, in order to provide a realistic examination environment as in situ. Previous designs with electric actuators were limited in terms of torque, dimensions and ergonomics, which actually did not match end-users’ remote ultrasonography requirements. This paper describes the mechatronic design of an haptic pneumatic probe replica and preliminary control laws for it to perform as a Variable Stiffness Actuator (VSA). This approach is original and experimental results are provided to validate its feasibility.

Keywords

Medical robotics Haptics Variable Stiffness Actuator Pneumatics 

References

  1. 1.
    Abry, F., Brun, X., Sesmat, S., Bideaux, E.: Non-linear position control of a pneumatic actuator with closed-loopstiffness and damping tuning. In: Proceedings of the European Control Conference 2013 (2013)Google Scholar
  2. 2.
    Falcao Carneiro, J., Gomes de Almeida, F.: Using two servovalves to improve pneumatic force control in industrial cylinders. Int. J. Adv. Manuf. Technol. 66(1–4), 283–301 (2013)CrossRefGoogle Scholar
  3. 3.
    Cestari, M., Sanz-Merodio, D., Arevalo, J.C., Garcia, E.: Ares, a variable stiffness actuator with embedded force sensor for the atlas exoskeleton. Ind. Robot.: Int. J. 41(6), 518–526 (2014)CrossRefGoogle Scholar
  4. 4.
    Charron, G., et al.: Robotic platform for an interactive tele-echographic system: the prosit anr-2008 project. In: Proceedings of Hamlyn Symposium on Medical Robotics, London, UK, May 2010Google Scholar
  5. 5.
    Conti, F., Park, J., Khatib, O.: Interface design and control strategies for a robot assisted ultrasonic examination system. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 79, pp. 97–113. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-28572-1_7CrossRefGoogle Scholar
  6. 6.
    Courreges, F., Novales, C., Poisson, G., Vieyres, P.: Modelisation, commande geometrique et utilisation d’un robot portable de tele-echographie: teresa. J. Eur. Syst. Autom. (JESA) 43(1), 165–196 (2009). ISSN 12696935Google Scholar
  7. 7.
    Gourdon, A., Poignet, P., Poisson, G., Vieyres, P., Marche, P.: A new robotic mechanism for medical application. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 1999), pp. 33–38 (1999)Google Scholar
  8. 8.
    Groothuis, S.S., Rusticelli, G., Zucchelli, A., Stramigioli, S., Carloni, R.: The variable stiffness actuator vsaUT-II: mechanical design, modeling, and identification. IEEE/ASME Trans. Mechatron. 19(2), 589–597 (2014)CrossRefGoogle Scholar
  9. 9.
    Jafari, A., Tsagarakis, N.G., Sardellitti, I., Caldwell, D.G.: A new actuator with adjustable stiffness based on a variable ratio lever mechanism. IEEE/ASME Trans. Mechatron. 19(1), 55–63 (2014)CrossRefGoogle Scholar
  10. 10.
    Krupa, A., Folio, D., Novales, C., Vieyres, P., Li, T.: Robotized tele-echography: an assisting visibility tool to support expert diagnostic. IEEE Syst. J. PP(99), 1–10 (2014)Google Scholar
  11. 11.
    Masuda, K., Kimura, E., Tateishi, N., Ishihara, K.: Three dimensional motion mechanism of ultrasound probe and its application for tele-echography system. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1112–1116 (2001)Google Scholar
  12. 12.
    Mourioux, G., Novales, C., Smith-Guerin, N., Vieyres, P., Poisson, G.: A free haptic device for tele-echography. In: Proceedings of International Workshop on Research and Education in Mechatronics (REM 2005), Annecy, June 2005Google Scholar
  13. 13.
    Najafi, F., Sepehri, N.: A novel hand-controller for remote ultrasound imaging. Mechatronics 18(10), 578–590 (2008)CrossRefGoogle Scholar
  14. 14.
    Nouaille, L., Vieyres, P., Poisson, G.: Process of optimisation for a 4 DOF tele-echography robot. Robotica 30, 1131–1145 (2012)CrossRefGoogle Scholar
  15. 15.
    Abd, R., Rahman, L.H., Sepehri, N.: Design and experimental study of a dynamical adaptive backstepping–sliding mode control scheme for position tracking and regulating of a low-cost pneumatic cylinder. Int. J. Robust Nonlinear Control. 26(4), 853–875 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Semini, C., Tsagarakis, N.G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D.G.: Design of HyQ-a hydraulically and electrically actuated quadruped robot. Proc. Inst. Mech. Eng. Part J. Syst. Control Eng. 225, 831–849 (2011)Google Scholar
  17. 17.
    Senac, T., Lelevé, A., Moreau, R.: Control laws for pneumatic cylinder in order to emulate the loss of resistance principle. In: IFAC 2017 World Congress, Proceedings of the 20th World Congress of the International Federation of Automatic Control, Toulouse, France, July 2017. IFAC (2017)Google Scholar
  18. 18.
    Takaiwa, M., Noritsugu, T.: Development of pneumatic human interface and its application for compliance display. In: Proceedings of 26th Annual Conference of the IEEE Industrial Electronics Society (IECON 2000), pp. 806–811, vol. 2 (2000)Google Scholar
  19. 19.
    Vieyres, P., et al.: The next challenge for world wide robotized tele-echographyexperiment (wortex 2012): from engineering success to healthcare delivery. In: Proceedings of TUMI II, Congreso Peruano de Ingeniera Biomedical Bioingeniera, Biotecnologica y Fisica Medica, Lima, Peru, May 2013Google Scholar
  20. 20.
    Vieyres, P., Poisson, G., Courreges, F., Smith-Guerin, N., Novales, C., Arbeille, P.: A tele-operated robotic system for mobile tele-echography: the Otelo project. In: Istepanian, R.S.H., Laxminarayan, S., Pattichis, C.S. (eds.) M-Health. Topics in Biomedical Engineering, pp. 461–473. Springer, Boston (2006).  https://doi.org/10.1007/0-387-26559-7_35CrossRefGoogle Scholar
  21. 21.
    Vieyres, P., et al.: An anticipative control approach and interactive gui to enhance the rendering of the distal robot interaction with its environment during robotized tele-echography: interactive platform for robotized tele-echography. Int. J. Monit. Surveill. Technol. Res. 1(3), 1–19 (2013)Google Scholar
  22. 22.
    Vilchis Gonzales, A., et al.: TER: a system for robotic tele-echography. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 326–334. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45468-3_39CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ibrahim Abdallah
    • 1
  • Fabrice Gatwaza
    • 1
  • Nicolas Morette
    • 2
  • Arnaud Lelevé
    • 1
  • Cyril Novales
    • 2
  • Laurence Nouaille
    • 2
  • Xavier Brun
    • 1
  • Pierre Vieyres
    • 2
  1. 1.Univ Lyon, INSA Lyon, Laboratoire Ampère (UMR 5005)LyonFrance
  2. 2.Univ. Orléans, INSA-CVL, PRISMEBourgesFrance

Personalised recommendations