Advertisement

Affectional Ontology and Multimedia Dataset for Sentiment Analysis

  • Rana Abaalkhail
  • Fatimah Alzamzami
  • Samah Aloufi
  • Rajwa Alharthi
  • Abdulmotaleb El Saddik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11010)

Abstract

Ontology is able to understand the association between concepts and the relationships within contents. We argue that, ontology could compete with machine learning in detecting sentiments contained in textual messages. Current ontology-based sentiment models are domain specific, which limits their ability to adapt to different domains. In this work, we propose a general sentiment ontology (Affectional Ontology) using various sentiment lexicons and psychological-based resources. To provide an efficient evaluation on the Affectional Ontology, we propose a domain-free sentiment multimedia dataset (DFSMD). Our DFSMD was constructed with high standard annotation criteria. The results of our work show the effectiveness of the proposed ontology in capturing the sentiment, when compared to the machine learning approach. The proposed DFSMD is publicly available and can be used in various sentiment analysis problems without the restrictions of particular domains or aspects.

Keywords

Ontology Machine learning Sentiment analysis Multimedia Dataset 

References

  1. 1.
    Abaalkhail, R., Guthier, B., Alharthi, R., El Saddik, A.: Survey on ontologies for affective states and their influences. Semant. Web, 1–18 (2016).  https://doi.org/10.3233/SW-170270
  2. 2.
    Alharthi, R., Guthier, B., Guertin, C., El Saddik, A.: A dataset for psychological human needs detection from social networks. IEEE Access 5, 9109–9117 (2017).  https://doi.org/10.1109/ACCESS.2017.2706084CrossRefGoogle Scholar
  3. 3.
    Jurafsky, D., Martin, J.H., Lexicons for sentiment and affect extraction. In: Speech and Language Processing, pp. 326–344. Pearson London (2014).  https://doi.org/10.1162/089120100750105975
  4. 4.
    Cowie, R., Douglas-Cowie, E., Apolloni, B., Taylor, J., Romano, A., Fellenz, W., et al.: What a neural net needs to know about emotion words. Comput. Intell. Appl. 404, 5311–5316 (1999)Google Scholar
  5. 5.
    Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using Twitter hashtags and smileys. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pp. 241–249. Association for Computational Linguistics (2010)Google Scholar
  6. 6.
    Frijda, N.H.: The Emotions. Cambridge University Press (1986).  https://doi.org/10.1017/9781316275221
  7. 7.
    Fujita, F., Diener, E., Sandvik, E.: Gender differences in negative affect and well-being: the case for emotional intensity. J. Pers. Soc. Psychol. 61(3), 427 (1991)CrossRefGoogle Scholar
  8. 8.
    Go, A., Bhayani, R., Huang, : L.: Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, vol. 1, no. 2009, p. 12 (2009)Google Scholar
  9. 9.
    Hogenboom, A., Bal, D., Frasincar, F., Bal, M., De Jong, F., Kaymak, U.: Exploiting emoticons in polarity classification of text. J. Web Eng. 14(1–2), 22–40 (2015)Google Scholar
  10. 10.
    Hogenboom, A., Bal, D., Frasincar, F., Bal, M., de Jong, F., Kaymak, U.: Exploiting emoticons in sentiment analysis. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 703–710. ACM (2013).  https://doi.org/10.1145/2480362.2480498
  11. 11.
    Hovy, E.H.: What are sentiment, affect, and emotion? Applying the methodology of michael Zock to sentiment analysis. In: Gala, N., Rapp, R., Bel-Enguix, G. (eds.) Language Production, Cognition, and the Lexicon. TSLT, vol. 48, pp. 13–24. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-08043-7_2CrossRefGoogle Scholar
  12. 12.
    Kiritchenko, S., Zhu, X., Mohammad, S.M.: Sentiment analysis of short informal texts. J. Artif. Intell. Res. 50, 723–762 (2014).  https://doi.org/10.1613/jair.4272CrossRefGoogle Scholar
  13. 13.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, pp. 168–177. ACM, New York (2004). https://doi.org/10.1145/1014052.1014073
  14. 14.
    Kontopoulos, E., Berberidis, C., Dergiades, T., Bassiliades, N.: Ontology-based sentiment analysis of Twitter posts. Expert Syst. Appl. 40(10), 4065–4074 (2013).  https://doi.org/10.1016/j.eswa.2013.01.001CrossRefGoogle Scholar
  15. 15.
    Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013).  https://doi.org/10.1111/j.1467-8640.2012.00460.xMathSciNetCrossRefGoogle Scholar
  16. 16.
    Nithish, R., Sabarish, S., Kishen, M.N., Abirami, A., Askarunisa, A.: An ontology based sentiment analysis for mobile products using tweets. In: 2013 Fifth International Conference on Advanced Computing (ICoAC), pp. 342–347. IEEE (2013).  https://doi.org/10.1109/ICoAC.2013.6921974
  17. 17.
    Novak, P.K., Smailović, J., Sluban, B., Mozetič, I.: Sentiment of emojis. PloS One 10(12), e0144296 (2015)CrossRefGoogle Scholar
  18. 18.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREc, vol. 10 (2010).  https://doi.org/10.17148/ijarcce.2016.51274
  19. 19.
    Parrott, W.G.: Emotions in Social Psychology: Essential Readings. Psychology Press, Hove (2001)Google Scholar
  20. 20.
    Ravi, K., Ravi, V.: A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl.-Based Syst. 89, 14–46 (2015).  https://doi.org/10.1016/j.knosys.2015.06.015CrossRefGoogle Scholar
  21. 21.
    Rosenthal, S., Farra, N., Nakov, P.: Semeval-2017 task 4: sentiment analysis in Twitter. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 502–518 (2017)Google Scholar
  22. 22.
    Sam, K.M., Chatwin, C.: Ontology-based sentiment analysis model of customer reviews for electronic products. In: Encyclopedia of Information Science and Technology, 3rd edn, pp. 892–904. IGI Global (2015).  https://doi.org/10.4018/978-1-4666-5888-2.ch085
  23. 23.
    Snow, R., O’Connor, B., Jurafsky, D., Ng, A.Y.: Cheap and fast—but is itgood?: evaluating non-expert annotations for natural language tasks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 254–263. Association for Computational Linguistics (2008)Google Scholar
  24. 24.
    Speriosu, M., Sudan, N., Upadhyay, S., Baldridge, J.: Twitter polarity classification with label propagation over lexical links and the follower graph. In: Proceedings of the First Workshop on Unsupervised Learning in NLP, pp. 53–63. Association for Computational Linguistics (2011)Google Scholar
  25. 25.
    Strapparava, C., Valitutti, A., et al.: Wordnet affect: an affective extension of wordnet. In: LREC, vol. 4, pp. 1083–1086 (2004)Google Scholar
  26. 26.
    Sykora, M.D., Jackson, T., O’Brien, A., Elayan, S.: Emotive ontology: extracting fine-grained emotions from terse, informal messages (2013)Google Scholar
  27. 27.
    Wierzbicka, A.: Emotions Across Languages and Cultures: Diversity and Universals. Cambridge University Press, Cambridge (1999).  https://doi.org/10.1017/CBO9780511521256CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Multimedia Communications Research LaboratoryUniversity of OttawaOttawaCanada

Personalised recommendations