Adaptive Dithering Using Curved Markov-Gaussian Noise in the Quantized Domain for Mapping SDR to HDR Image

  • Subhayan MukherjeeEmail author
  • Guan-Ming Su
  • Irene Cheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11010)


High Dynamic Range (HDR) imaging is gaining increased attention due to its realistic content, for not only regular displays but also smartphones. Before sufficient HDR content is distributed, HDR visualization still relies mostly on converting Standard Dynamic Range (SDR) content. SDR images are often quantized, or bit depth reduced, before SDR-to-HDR conversion, e.g. for video transmission. Quantization can easily lead to banding artefacts. In some computing and/or memory I/O limited environment, the traditional solution using spatial neighborhood information is not feasible. Our method includes noise generation (offline) and noise injection (online), and operates on pixels of the quantized image. We vary the magnitude and structure of the noise pattern adaptively based on the luma of the quantized pixel and the slope of the inverse-tone mapping function. Subjective user evaluations confirm the superior performance of our technique.


High dynamic range Image coding Image quality Dithering Gaussian noise 


  1. 1.
    Miller, S., Nezamabadi, M., Daly, S.: Perceptual signal coding for more efficient usage of bit codes. In: Annual Technical Conference Exhibition, pp. 1–9. SMPTE (2012)Google Scholar
  2. 2.
    Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K.: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting, 2nd edn. Morgan Kaufmann, Burlington (2010)Google Scholar
  3. 3.
    Dufaux, F., Callet, P.L., Mantiuk, R., Mrak, M.: High Dynamic Range Video: From Acquisition, to Display and Applications. Academic Press, New York (2016)Google Scholar
  4. 4.
    Rempel, A.G., et al.: Ldr2Hdr: on-the-fly reverse tone mapping of legacy video and photographs. In: SIGGRAPH. ACM (2007)Google Scholar
  5. 5.
    Banterle, F., Ledda, P., Debattista, K., Chalmers, A.: Inverse tone mapping. In: 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, New York, NY, USA, pp. 349–356 (2006)Google Scholar
  6. 6.
    Kuo, P.-H., Tang, C.-S., Chien, S.-Y.: Content-adaptive inverse tone mapping. In: International Conference on Visual Communications and Image Processing (VCIP), pp. 1–6. IEEE (2012)Google Scholar
  7. 7.
    Chen, Q., Su, G.-M., Yin, P.: Near constant-time optimal piecewise LDR to HDR inverse tone mapping. In: SPIE 9404, 94 040O–11 (2015)Google Scholar
  8. 8.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson, London (2007)Google Scholar
  9. 9.
    Foley, H., Matlin, M.: Sensation and Perception, 5th edn. Psychology Press, London (2009)Google Scholar
  10. 10.
    Nguyen, T.Q., Kay, J., Pasquale, J.: Fast source-based dithering for networked digital video. In: High-Speed Networking and Multimedia Computing. SPIE (1994)Google Scholar
  11. 11.
    Bayer, B.E.: An optimum method for two-level rendition of continuous tone picture. In: International Conference on Communications, pp. (26–11)–(26–15). IEEE (1973)Google Scholar
  12. 12.
    Floyd, R., Steinberg, L.: An adaptive algorithm for spatial gray scale. In: Society for Information Display Symposium Digest of Technical Papers, pp. 36–37 (1975)Google Scholar
  13. 13.
    Foley, J., van Dam, A., Feiner, S., Hughes, J.: Computer Graphics: Principles and Practice, 2nd edn. Addison-Wesley, Boston (1990)zbMATHGoogle Scholar
  14. 14.
    Jarvis, J.F., Judice, C.N., Ninke, W.H.: A survey of techniques for the display of continuous tone pictures on bilevel displays. Comput. Graph. Image Process. 5, 13–40 (1976)CrossRefGoogle Scholar
  15. 15.
    Judith, J.N., Jarvis, J.F., Ninke, W.: Using ordered dither to display continuous tone pictures on an AC plasma panel. In: Proceedings of the Society for Information Display, Q4, pp. 161–169 (1976)Google Scholar
  16. 16.
    Heckbert, P.: Color image quantization for frame buffer display. Comput. Graph. 16(3), 297–307 (1982)CrossRefGoogle Scholar
  17. 17.
    Netravali, A., Haskell, B.G.: Digital Pictures: Representation and Compression. Plenum Press, New York (1988)CrossRefGoogle Scholar
  18. 18.
    Roberts, L.G.: Picture coding using pseudo-random noise. IRE Trans. Inf. Theory 8, 145–154 (1962)CrossRefGoogle Scholar
  19. 19.
    Stoffel, J.C., Moreland, J.F.: Survey of electronic techniques for pictorial image reproduction. IEEE Trans. on Commun. 29(12), 1898–1925 (1981)CrossRefGoogle Scholar
  20. 20.
    Ulichney, R.: Digital Halftoning. MIT Press, Cambridge (1987)Google Scholar
  21. 21.
    Ulichney, R.: Video rendering. Digit. Tech. J. 5(2), 9–18 (1993)Google Scholar
  22. 22.
    Su, G.-M., Chen, T., Yin, P., Qu, S.: Guided post-prediction filtering in layered VDR coding. U.S. Patent 8,897,581 B2 (2014)Google Scholar
  23. 23.
    Su, G.-M., Qu, S., Daly, S.: Adaptive false contouring prevention in layered coding of images with extended dynamic range. U.S. Patent 8,873,877 B2 (2014)Google Scholar
  24. 24.
    Daly, S.J., Feng, X.: Decontouring: prevention and removal of false contour artifacts. In: Proceedings of SPIE, vol. 5292, pp. 130–149. SPIE (2004)Google Scholar
  25. 25.
    Lee, J.W., Lim, B.R., Park, R.-H., Kim, J.-S., Ahn, W.: Two-stage false contour detection using directional contrast and its application to adaptive false contour reduction. IEEE Trans. Consum. Electron. 52(1), 179–188 (2006)Google Scholar
  26. 26.
    Bhagavathy, S., Llach, J., Zhai, J.: Multi-scale probabilistic dithering for suppressing banding artifacts in digital images. In: International Conference on Image Processing, pp. IV-397–IV-400. IEEE (2007)Google Scholar
  27. 27.
    Huang, Q., Kim, H.Y., Tsai, W.J., Jeong, S.Y., Choi, J.S., Kuo, C.C.J.: Understanding and removal of false contour in HEVC compressed images. IEEE Trans. Circuits Syst. Video Technol. 99, 1 (2016)Google Scholar
  28. 28.
    Mantiuk, R., Myszkowski, K., Seidel, H.-P.: A perceptual framework for contrast processing of high dynamic range images. ACM Trans. Appl. Percept. 3(3), 286–308 (2006)CrossRefGoogle Scholar
  29. 29.
    Miller, S.: 2017 Update on High Dynamic Range Television. SMPTE Motion Imaging J. 126(7), 94–96 (2017)CrossRefGoogle Scholar
  30. 30.
    Song, Q., Su, G.M., Cosman, P.: Hardware-efficient debanding and visual enhancement filter for inverse tone mapped high dynamic range images and videos. In: International Conference on Image Processing. IEEE (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of AlbertaEdmontonCanada
  2. 2.Dolby Laboratories Inc.SunnyvaleUSA

Personalised recommendations