Towards Maritime Videosurveillance Using 4K Videos

  • V. MariéEmail author
  • I. Bechar
  • F. Bouchara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11010)


This paper develops a novel approach to automatic maritime target recognition in the framework of near real-time maritime video-surveillance using super-resolved (i.e.; 4K) videos captured either with a static or with a moving video camera. The challenge of achieving a robust 4K video-based surveillance system is twofold. Firstly, the 4K video resolution (\(3840 \times 2160\) px.) constrains considerably the amount of video-processing for meeting the near real-time requirement. Secondly, maritime environment is very dynamic and highly unpredictable, thereby, rendering target extraction a difficult task. Therefore, the proposed approach attempts to leverage both temporal and spatial video information for achieving fast and accurate target extraction. In fact, since, the object rigidity assumption is implemented parsimoniously, i.e.; at key video locations, its real-time implementation, first, enables to quickly extract potential (sparse) target locations. Furthermore, we have shown, experimentally using many maritime videos, that maritime targets generally exhibit richer textural variations than dynamic background at different scales. Thus, secondly, a still image based multi-scale texture discrimination algorithm carried out around previously extracted key video locations allows to achieve final target extraction. An experimental study we have conducted both using our own maritime video datasets and publicly available video datasets have demonstrated the feasibility of the proposed approach.


Maritime videosurveillance 4K video Spatiotemporal approach 


  1. 1.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  2. 2.
    Bechar, I., Lelore, T., Bouchara, F., Guis, V., Grimaldi, M.: Object segmentation from a dynamic background using a pixelwise rigidity criterion and application to maritime target recognition. In: ICIP, pp. 363–367 (2014)Google Scholar
  3. 3.
    Bechar, I., Lelore, T., Bouchara, F., Guis, V., Grimaldi, M.: Toward an airborne system for near real-time maritime video-surveillance based on synchronous visible light and thermal infrared video information fusion. In: OCOSS (2013)Google Scholar
  4. 4.
    Cruz, G., Bernardino, A.: Aerial detection in maritime scenarios using convolutional neural networks. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 373–384. Springer, Cham (2016). Scholar
  5. 5.
    Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). Scholar
  6. 6.
    Gallego, J., Pardas, M., Haro, G.: Bayesian foreground segmentation and tracking using pixel-wise background model and region based foreground model. In: ICIP 2009, vol. 50, pp. 566–571 (2015)Google Scholar
  7. 7.
    Grimaldi, M., Bechar, I., Lelore, T., Guis, V., Bouchara, F.: An unsupervised approach to automatic object extraction from a maritime video scene. In: IPTA, pp. 378–383 (2014)Google Scholar
  8. 8.
    Liu, Y., Cui, H.Y., Kuang, Z., Li, G.Q.: Ship detection and classification on optical remote sensing images using deep learning. In: ITM Web Conference, vol. 12, p. 05012 (2017)Google Scholar
  9. 9.
    Leggat, J., Litvak, T., Parker, I., Sinha, A., Vidalis, S., Wong, A.: Study on persistent monitoring of maritime, great lakes and St. lawrence seaway border regions. Contract report DRDC CSS CR, 2011–2028 (2011)Google Scholar
  10. 10.
    Lin, S.C.F., Wong, C.Y., Jiang, G., Rahman, M.A., Kwok, N.M.: Radial fourier analysis (RFA) image descriptor. In: 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 814–819, August 2014.
  11. 11.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mahadevan, V., Vasconcelos, N.: Spatiotemporal saliency in dynamic scenes. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 171–177 (2010)CrossRefGoogle Scholar
  13. 13.
    Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: CVPR, pp. 302–309 (2004)Google Scholar
  14. 14.
    Narayana, M., Hanson, A., Learned-Miller, E.: Coherent motion segmentation in moving camera videos using optical flow orientations. In: ICCV, pp. 1577–1584 (2013)Google Scholar
  15. 15.
    Oneata, D., Revaud, J., Verbeek, J., Schmid, C.: Spatio-temporal object detection proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 737–752. Springer, Cham (2014). Scholar
  16. 16.
    Pires, N., Guinet, J., Dusch, E.: ASV: an innovative automatic system for maritime surveillance. Navigation 58(232), 1–20 (2010)Google Scholar
  17. 17.
    Prasad, D.K., Rajan, D., Rachmawati, L., Rajabally, E., Quek, C.: Video processing from electro-optical sensors for object detection and tracking in a maritime environment: a survey. IEEE Trans. Intell. Transp. Syst. 18, 1993–2016 (2017)CrossRefGoogle Scholar
  18. 18.
    Rhodes, B.J., et al.: SeeCoast: persistent surveillance and automated scene understanding for ports and coastal areas. In: SPIE, vol. 6578, no. 1, p. 65781 (2007)Google Scholar
  19. 19.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011, pp. 2564–2571. IEEE Computer Society (2011)Google Scholar
  20. 20.
    Sheikh, Y., Javed, O., Kanade, T.: Background subtraction for freely moving cameras. In: ICCV, pp. 1219–1225 (2009)Google Scholar
  21. 21.
    Smith, A., Teal, M.: Identification and tracking of marine objects in nearinfrared image sequences for collision avoidance. In: 7th International Conference on Image Processing and Its Applications, pp. 250–254 (1999)Google Scholar
  22. 22.
    Vidal, R., Soatto, S., Sastry, S.: Segmentation of dynamic scenes from the multi-body fundamental matrix. In: Proceedings of the Workshop on Analysis of Dynamic Scenes (2002)Google Scholar
  23. 23.
    Moo Yi, K., Yun, K., Wan Kim, S., Jin Chang, H., Young Choi, J.: Detection of moving objects with non-stationary cameras in 5.8ms: bringing motion detection to your mobile device. In: CVPR Workshops, pp. 27–34. IEEE Computer Society (2013)Google Scholar
  24. 24.
    Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004. vol. 2, pp. 28–31, August 2004Google Scholar
  25. 25.
    Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27, 773–780 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Aix Marseille Univ, Université de Toulon, CNRS, LIS, UMR 7020MarseilleFrance
  2. 2.CS Systemes D’informationParisFrance

Personalised recommendations