A Complete Course on Theoretical Physics pp 513-621 | Cite as

# Thermodynamics and Statistics

## Abstract

Classical thermodynamics can be derived from a set of axioms, but this chapter starts out from the statistical nature of quantum theory, thereby giving a meaning to these axioms. The binomial, Poisson, Gauss, and Maxwell distributions are compared with their implications for average values, correlations, and uncertainties. A basic issue is the minimum size of the phase space element. While classical differential equations are invariant under time reversal, the notion of entropy breaks this symmetry. We derive the relaxation-time approximation, the Liouville, collision-free Boltzmann, Langevin, and Fokker–Planck equations, and the fluctuation–dissipation theorem. The entropy theorem implies thermal, mechanical, and chemical equilibrium conditions using micro-canonical, canonical, grand-canonical, and other ensembles, with applications to gases, mixtures, Fermi gases, photons, and lattice vibrations. Phase transitions of first and second order and critical behavior in (real) gases, para- and ferromagnets, and also Bose–Einstein condensation are all reviewed. There is a list of 42 problems.

## Supplementary material

## References

- 1.C. Caratheodory, Sitzungsber. Preu. Akad.
**33**(3 July 1919)Google Scholar - 2.A. Sommerfeld,
*Lectures on Theoretical Physics 5–Thermodynamics and Statistical Mechanics*(Academic, London-Elsevier, Amsterdam, 1964)Google Scholar - 3.Ch. Kittel, H. Krämer,
*Thermal Physics*, 2nd edn. (W.H. Freeman, San Francisco, 1980)Google Scholar - 4.F. Reif,
*Fundamentals of Statistical and Thermal Physics*(McGraw-Hill, New York NY, 1965—Waveland Press, Long Grove, 2010)Google Scholar - 5.R. Zurmühl,
*Matrizen*(Springer, Berlin, 1964). in GermanzbMATHGoogle Scholar - 6.C. Syros, The linear Boltzmann equation properties and solutions. Phys. Rep.
**45**, 211–300 (1978)ADSMathSciNetCrossRefGoogle Scholar - 7.H. Risken,
*The Fokker-Planck Equation*(Springer, Berlin, 1989)CrossRefGoogle Scholar - 8.J.R. Rumble (Ed.),
*CRC Handbook of Chemistry and Physics*, 98th edn. (CRC Press, Taylor & Francis, London, 2017)Google Scholar - 9.A. Sommerfeld,
*Lectures on Theoretical Physics 6–Partial Differential Equations in Physics*(Academic, London-Elsevier, Amsterdam, 1964)Google Scholar - 10.A. Bohr, B.R. Mottelson,
*Nuclear structure*, Vol. 1 (Benjamin 1969—World Scientific 1998)Google Scholar

## Suggestions for Textbooks and Further Reading

- 11.R. Baierlein,
*Thermal Physics*(Cambridge University Press, Cambridge, 1999)CrossRefGoogle Scholar - 12.S.J. Blundell, K.M. Blundell,
*Concepts in Thermal Physics*, 2nd edn. (Oxford University Press, Oxford, 2010)zbMATHGoogle Scholar - 13.N.N. Bogolubov, N.N. Bogolubov Jr.,
*Introduction to Quantum Statistical Mechanics*(World Scientific, Singapore, 1982)CrossRefGoogle Scholar - 14.W. Greiner, L. Heise, H. Stöcker,
*Thermodynamics and Statistical Mechanics*(Springer, New York, 1995)zbMATHGoogle Scholar - 15.L.P. Kadanov, G. Baym,
*Quantum Statistical Mechanics*(Benjamin, New York, 1982)Google Scholar - 16.D. Kondepudi,
*Introduction to Modern Thermodynamics*(Wiley, Chichester, 2008)Google Scholar - 17.L.D. Landau, E.M. Lifshitz,
*Course of Theoretical Physics Vol. 5—Statistical Physics*3rd edn., (Butterworth–Heinemann, Oxford, 1980)Google Scholar - 18.E.M. Lifshitz, L.P. Pitaevskii,
*Course of Theoretical Physics Vol. 9—Statistical Physics Part 2—Theory of the Condensed State*(Butterworth–Heinemann, Oxford, 1980)Google Scholar - 19.W. Nolting,
*Theoretical Physics 5–Thermodynamics*(Springer, Berlin, 2017)zbMATHGoogle Scholar - 20.B.N. Roy,
*Fundamentals of Classical and Statistical Thermodynamics*(Wiley, Chichester, 2002)zbMATHGoogle Scholar - 21.F. Scheck,
*Statistical Theory of Heat*(Springer, Berlin, 2016)CrossRefGoogle Scholar - 22.D.V. Schroeder,
*An Introduction to Thermal Physics*(Addison-Wesley, San Francisco, 2000)CrossRefGoogle Scholar