Advertisement

Summary and Outlook

  • Marcus Aßmus
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

In present treatise an approach for structural analysis of Anti-Sandwiches is presented. In principle, theories for thin-walled structures are suitable for mechanical analysis at such configurations. Since mechanical properties and structural thicknesses of the different layers of an Anti-Sandwich differ widely, classical approaches for composite structures fail to predict correct results. Therefore, a layer-wise approach is chosen within the present discourse. Each layer is considered as a single continuum, while all equations are related to the middle surface of the structure.

References

  1. 1.
    Altenbach H (1987) The direct approach in the theory of viscoelastic shells (in Russian). Habilitation thesis, Leningrad Polytechnic InstituteGoogle Scholar
  2. 2.
    Altenbach H, Eremeyev V (2017) Thin-walled structural elements: classification, classical and advanced theories, new applications, pp 1–62.  https://doi.org/10.1007/978-3-319-42277-0_1
  3. 3.
    Aßmus M, Köhl M (2012) Experimental investigation of the mechanical behavior of photovoltaic modules at defined inflow conditions. J Photonics Energy 2(1):1–11.  https://doi.org/10.1117/1.JPE.2.022002CrossRefGoogle Scholar
  4. 4.
    Aßmus M, Naumenko K, Altenbach H (2016) A multiscale projection approach for the coupled global-local structural analysis of photovoltaic modules. Compos Struct 158:340–358.  https://doi.org/10.1016/j.compstruct.2016.09.036CrossRefGoogle Scholar
  5. 5.
    Aßmus M, Nordmann J, Naumenko K, Altenbach H (2017) A homogeneous substitute material for the core layer of photovoltaic composite structures. Compos Part B: Eng 112:353–372.  https://doi.org/10.1016/j.compositesb.2016.12.042CrossRefGoogle Scholar
  6. 6.
    Blinowski A, Ostrowska-Maciejewska J, Rychlewski J (1996) Two-dimensional Hooke’s tensors – isotropic decomposition, effective symmetry criteria. Arch Mech 48(2):325–345. http://am.ippt.pan.pl/am/article/view/v48p325/463
  7. 7.
    Bourbaki N (1971) Elemente der Mathematikgeschichte. Vandenhoek & Ruprecht, GöttingenzbMATHGoogle Scholar
  8. 8.
    Föppl A (1907) Vorlesungen über technische Mechanik. B.G. Teubner, LeipzigzbMATHGoogle Scholar
  9. 9.
    Koiter W (1969) Theory of thin shells. Springer, Heidelberg, chap Foundations and basic equations of shell theory: a survey of recent progress, pp 93–105. IUTAM Symposium Copenhagen 1967. http://www.springer.com/gp/book/9783642884788
  10. 10.
    Kowalczyk-Gajewska K, Ostrowska-Maciejewska J (2009) Review on spectral decomposition of Hooke’s tensor for all symmetry groups of linear elastic material. Eng Trans 57(3–4):145–183. www.ippt.pan.pl/Repository/o451.pdf
  11. 11.
    Naumenko K, Eremeyev VA (2014) A layer-wise theory for laminated glass and photovoltaic panels. Compos Struct 112:283–291.  https://doi.org/10.1016/j.compstruct.2014.02.009CrossRefGoogle Scholar
  12. 12.
    Naumenko K, Eremeyev VA (2017) A layer-wise theory of shallow shells with thin soft core for laminated glass and photovoltaic applications. Compos Struct 178:434–446.  https://doi.org/10.1016/j.compstruct.2017.07.007CrossRefGoogle Scholar
  13. 13.
    Nye JF (1957) Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, Ely HousezbMATHGoogle Scholar
  14. 14.
    Schulze SH, Pander M, Naumenko K, Altenbach H (2012) Analysis of laminated glass beams for photovoltaic applications. Int J Solids Struct 49(15):2027–2036.  https://doi.org/10.1016/j.ijsolstr.2012.03.028CrossRefGoogle Scholar
  15. 15.
    Voigt W (1966) Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). Springer, Wiesbaden.  https://doi.org/10.1007/978-3-663-15884-4. Reproduktion des 1928 erschienenen Nachdrucks der ersten Auflage von 1910
  16. 16.
    von Kármán T (1910) Festigkeitsprobleme im Maschinenbau. Encyklopädie der mathematischen Wissenschaften IV:311–384Google Scholar
  17. 17.
    Zhang QZ, Shu BF, Chen MB, Liang QB, Fan C, Feng ZQ, Verlinden PJ (2015) Numerical investigation on residual stress in photovoltaic laminates after lamination. J Mech Sci Technol 29(2):655–662.  https://doi.org/10.1007/s12206-015-0125-yCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of MechanicsOtto von Guericke UniversityMagdeburg, Saxony-AnhaltGermany

Personalised recommendations