Advertisement

Convergence and Verification

  • Marcus Aßmus
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

At this point, the convergence of the numerical solution is to be checked and the numerical solution to be verified with a closed-form solution based on two limiting cases. Ultimately, the suitability of the finite element can be proven. It is based on a simple load and support situation. As illustrated in Fig. 6.1 on the left-hand side, a homogeneous and orthogonal load is used as model problem for all considerations in this chapter. For the sake of simplicity, the structure to be examined is symmetric in the transverse direction. The cover layers thus have identical geometric dimensions and material properties. Regarding supports, only the deflections at the edges with normal vector \(\varvec{\nu }\) are prohibited. These edges are thus supported torque-free. The geometric dimensions and material characteristics are exemplary.

References

  1. 1.
    Altenbach H, Altenbach J, Naumenko K (1998) Ebene Flächentragwerke \(\cdot \) Grundlagen der Modellierung und Berechnung von Scheiben und Platten. Springer, Berlin.  https://doi.org/10.1007/978-3-642-58721-4
  2. 2.
    Eisenträger J, Naumenko K, Altenbach H, Meenen J (2015) A user-defined finite element for laminated glass panels and photovoltaic modules based on a layer-wise theory. Compos Struct 133:265–277.  https://doi.org/10.1016/j.compstruct.2015.07.049CrossRefGoogle Scholar
  3. 3.
    Heuser H (1991) Gewöhnliche Differentialgleichungen - Einführung in Lehre und Gebrauch. Teubner, StuttgartzbMATHGoogle Scholar
  4. 4.
    Kirchhoff GR (1850) Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik 40:51–88.  https://doi.org/10.1515/crll.1850.40.51MathSciNetCrossRefGoogle Scholar
  5. 5.
    Levy M (1877) Mémoire sur la théorie des plaques élastiques planes. Journal de Mathématiques Pures et Appliquées 3(3):219–306. http://sites.mathdoc.fr/JMPA/afficher_notice.php?id=JMPA_1877_3_3_A12_0
  6. 6.
    Nádai A (1925) Die elastischen Platten – Die Grundlagen und Verfahren zur Berechnung ihrer Formänderungen und Spannungen, sowie die Anwendungen der Theorie der ebenen zweidimensionalen elastischen Systeme auf praktische Aufgaben. Springer, Berlin.  https://doi.org/10.1007/978-3-662-11487-2
  7. 7.
    Navier M (1823) Mémoire sur les lois de l’équilibre et du mouvement des corps solides élastiques. Bulletin de la Société Philomathique de Paris, pp 177–181Google Scholar
  8. 8.
    Timoshenko S, Woinowsky-Krieger S (1987) Theory of Plates and Shells, 2nd edn. McGraw-Hill, New York (1st edn 1959)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of MechanicsOtto von Guericke UniversityMagdeburg, Saxony-AnhaltGermany

Personalised recommendations