Advertisement

Multilayered Surface Continua

  • Marcus Aßmus
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The computation of composite structures, as introduced in Chap.  1, requires the extension of the presented concept of the surface continuum to multiple layers. This is especially true when the physical layer thicknesses differ widely and the mechanical properties of the layer materials are strongly divergent. This is the case with Anti-Sandwiches. In this sense, the present chapter introduces a so-called layer-wise theory. Each layer is considered individually, whereby the coupling is realized via kinematic constraints. However, apart from the consideration of the individual mid surfaces, this procedure also requires the consideration of interfaces of the physical structure.

References

  1. 1.
    Altenbach H, Altenbach J, Rikards R (1996) Einführung in die Mechanik der Laminat- und Sandwichtragwerke - Modellierung und Berechnung von Balken und Platten aus Verbundwerkstoffen. Deutscher Verlag für Grundstoffindustrie, StuttgartGoogle Scholar
  2. 2.
    Altenbach H, Altenbach J, Kissing W (2004) Mechanics of composite structural elements. Springer, Berlin.  https://doi.org/10.1007/978-3-662-08589-9
  3. 3.
    Aßmus M, Naumenko K, Altenbach H (2016) A multiscale projection approach for the coupled global-local structural analysis of photovoltaic modules. Compos Struct 158:340–358.  https://doi.org/10.1016/j.compstruct.2016.09.036CrossRefGoogle Scholar
  4. 4.
    Mittelstedt C, Becker W (2017) Strukturmechanik ebener Laminate. Technische Universität Darmstadt, DarmstadtGoogle Scholar
  5. 5.
    Naumenko K, Eremeyev VA (2014) A layer-wise theory for laminated glass and photovoltaic panels. Compos Struct 112:283–291.  https://doi.org/10.1016/j.compstruct.2014.02.009CrossRefGoogle Scholar
  6. 6.
    Neff P (2004) A geometrically exact cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Part i: formal dimensional reduction for elastic plates and existence of minimizers for positive cosserat couple modulus. Contin Mech Thermodyn 16(6):577–628.  https://doi.org/10.1007/s00161-004-0182-4
  7. 7.
    Schulze SH, Pander M, Naumenko K, Altenbach H (2012) Analysis of laminated glass beams for photovoltaic applications. Int J Solids Struct 49(15):2027–2036.  https://doi.org/10.1016/j.ijsolstr.2012.03.028CrossRefGoogle Scholar
  8. 8.
    Timoshenko SP (1921) On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos Mag 41(245):744–746.  https://doi.org/10.1080/14786442108636264CrossRefGoogle Scholar
  9. 9.
    Timoshenko SP (1922) On the transverse vibrations of bars of uniform cross-section. Philos Mag 43(253):125–131.  https://doi.org/10.1080/14786442208633855CrossRefGoogle Scholar
  10. 10.
    Weps M, Naumenko K, Altenbach H (2013) Unsymmetric three-layer laminate with soft core for photovoltaic modules. Compos Struct 105:332–339.  https://doi.org/10.1016/j.compstruct.2013.05.029CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of MechanicsOtto von Guericke UniversityMagdeburg, Saxony-AnhaltGermany

Personalised recommendations